
.... - TION PAGE FImppOe
HERNDGNOW No. 0704-018PL*roi AD-A242 525 pn.mk h r o eew atom am xar a8= af"a aW m

.N€l anw IWWS of any other aspea of the cooton of rdormaieon. wnckuvv kwegton for f~uc" "'u tx o umio n

HeSPNIn &wMeN H ay. Suit 1204. ITRNon. VA 22202-NAM2E (to AND OfA oS InSom10on anSPNSRIim TRING AGENCc. o

1. AGENC TE 3. REPORT TYPE AND DATES COVERED

T P E TG O F I N A L

14. TITLE AND SUBTITLE 5 FUNDING NUMBERS

Ada QUALITY AND STYLE: GUIDELINES FOR PROFESSIONAL
PROGRAMMERS

13. AUTR(a u 00wrs

#E LE CT E l

SNOVI 1991 n
7. PER FORMIN lieORGANIZATION NAM E(S) AND ADDR ESS(ES) -A 'l 8. PERFORMING ORGANIZATION

SOFTWA PRODUCTIVTY CONSORTIUM, INC. CRSRF D EPCE VERSTO N THESf O BUILDRI SCTIONS WILE THERE
2214 ROCK HILL RD
HERNDON, VA 22070-4005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORIN CWONITORING AGENCY

Ada JOINT PROGRAM OFFICE REPORT NUMBER

THE PENTAGON, RM. 3E1 18
WASHINGTON, D.C. 20301-3081

11I. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILIT'Y STATEMENT 12b. DISTRIBUTION CODE

UNCLASSIFIED - UNLIMITED PUBLIC DISTRIBUTION

13. ABSTRACT IMaximum 200 words)

THE SECOND EDITION HAS BEEN PRODUCED TO CORRECT, CLARIFY, AND ENHANCE VARIOUS TOPICS IN THE
ORIGINAL VERSION. INSTANTIATIONS HAVE BEEN INCLUDED WITHIN RELEVANT SECTIONS. WHILE THERE
HAVE BEEN CHANGES, ADDITIONS AND DELETIONS TO THE GUIDELINES, THE MAJOR CONCEPTUAL
CHANGES HAVE BEEN IN THE FOLLOWING AREAS: USE OF OTHERS CLAUSE IN CASE STATENEBTS, USE OF
WHILE LOOPS AND BLOCKS; EXCEPTION HANDLING, ANONYMOUS TASK TYPES, AND CONDITIONAL AND

TIMED ENTRY CALLS. THE SECTIONS ON COMMENTS AND THE CHAPTER ON REUSE HAVE BEEN EXPANDED.
THIS IS THE SUGGESTED Ada STYLE GUIDE FOR USE IN DoD PROGRAMS BY THE Ada JOINT PROGRAM
OFFICE.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada STYLE GUIDE 180
16. PRICE CODE

17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION I 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF ABSTRACT

UNCLASSIFIED UNCL

NSN 7540-01-2a0-550 Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Sid. 239-128

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

ZZZMSOFTWARE A 2tq 2 S525W "'W PRODUCTIVITY

~WW CONSORTIUM

Ada Quality and Style:
Guidelines for Professional Programmers

SPC-91061-N

VERSION 02.00.02

1991

Software Productivity Consortium
SPC Building

2214 Rock Hill Road
Herndon, Virginia 22070-4005

Copyright © 1989, 1991 Software Productivity Consortium, Inc., Herndon, Virginia.
Permission to use, copy, modify and distribute this documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appears in all
copies and that both this copyright notice and this permission notice appear in supporting
documentation, and that the name Software Productivity Consortium, Inc. not be used in
advertising or publicity pertaining to distribution of the guidelines without specific,
written prior permission. Software Productivity Consortium, Inc. makes no
representations about the suitability of the guidelines described herein for any purpose. It
is provided "as is" without express or implied warranty.

Unlimited Distribution

Ada Quality and Style:
Guidelines for Professional Programmers

SPC-91 061 -N

VERSION 02.00.02

1991 6&6aFo

I TAL
ULW - La -1a

ID~st ipe 0 a1

91-14786

PREFACE

The second edition has been produced to correct, clarify, update and enhance various topics in the original
version. The book has undergone minor restructuring. While the chapters remain the same, some of the
sections have been rearranged for clarity. Also, instantiations have been included within relevant sections.
In some sections, there is an additional subsection on automation. While there have been changes,
additions and deletions to the guidelines, the major conceptual changes have been in the following areas:
use of the others clause in case statements, use of while loops and blocks, exception handling, anonymous
task types, and conditional and timed entry calls. The sections on comments and the chapter on reuse have
been expanded. Additionally, some examples have been enhanced.

We invite comments on this guidebook to continue enhancing its quality and usefulness. We will consider
suggestions for current guidelines as well as areas for future expansion. Examples that highlight particular
points are most helpful.

Please direct comments to:

Technology Transfer Division - AQS
Software Productivity Consortium
SPC Building
2214 Rock Hill Road
Herndon, Virginia 22070-4005
(703) 742-7211

Please fill out and mail the registration form at the back of this document to receive updates and other
information.

iv Ada QUALITY AND STYLE

v

AUTHORS AND ACKNOWLEDGEMENTS

The authors for the second edition are Kent Johnson, Elisa Simmons, and Fred Stluka. Contributors are
Alex Blakemore and Robert Hofkin. Reviewers include Alex Blakemore, Rick Conn, Tim Harrison, Dave
Nettles, and Doug Smith. Additional support has been provided by Vicki Clatterbuck, Leslie Hubbard, and
Debra Morgan.

The following people contributed to an instantiation of the first edition's guidelines: Rich Bechtold, Pete
Bloodgood, Shawna Gregory, Tim Powell, Dave Nettles, Kevin Schaan, Doug Smith and Perry Tsacoumis.

Special thanks are extended to Loral for providing feedback in the form of their Software Productivity
Laboratory Ada Standards.

The Consortium would also like to acknowledge those involved in the first edition. The authors were
Richard Drake, Samuel Gregory, Margaret Skalko, and Lyn Uzzle. Managing the project was Paul Cohen.
The contributors and reviewers were Mark Dowson, John Knight, Henry Ledgard, and Robert Mathis.
Word processing was performed by Debra Morgan.

Additional supporters included Bruce Barnes, Alex Blakemore, Terry Bollinger, Charles Brown, Neil
Burkhard, William Carlson, Susan Carroll, John Chludzinski, Vicki Clatterbuck, Robert Cohen, Elizabeth
Comer, Daniel Cooper, Jorge Diaz-Herrera, Tim Harrison, Robert Hofkin, Allan Jaworski, Edward Jones,
John A.N: Lee, Eric Marshall, Charles Mooney, John Moore, Karl Nyberg, Arthur Pyster, Samuel
Redwine, Jr., William Riddle, Lisa Smith, Fred Stluka, Kathy Velick, David Weiss, and Howard Yudkin.

vi Ada QUALITY AND STYLE

vii Ada QUALITY AND STYLE

CONTENTS

CHAPTER 1 Introduction 1
1.1 HOW TO USE THIS BOOK 2

1.2 TO THE NEW Ada PROGRAMMER 3

1.3 TO THE EXPERIENCED Ada PROGRAMMER 3

1.4 TO THE SOFTWARE PROJECT MANAGER 3

CHAPTER 2 Source Code Presentation 5

2.1 CODE FORMATTING .. 5

2.2 SU M M A R Y .. 15

CHAPTER 3 Readability 17

3.1 SP E L L IN G ... 17

3.2 NAM ING CONVENTIONS 19

3.3 COM M ENTS .. . 24

3.4 U SIN G T Y PE S ... 36

3.5 SU M M A RY .. 37

CHAPTER 4 Program Structure 41
4.1 HIGH-LEVEL STRUCTURE 41

4.2 V ISIB IL IT Y .. 45

4.3 EX C EPT IO N S .. 50

4.4 SU M M A RY .. 5 1

CHAPTER 5 Programming Practices 55

5.1 OPTIONAL PARTS OF THE SYNTAX 55

5.2 PARA M ETER LISTS .. 58

5 .3 T Y P E S . 6 2

5.4 DATA STRUCTURES ... 64

5.5 EX PRESSIO N S .. . 66

5.6 ST A T EM EN T S ... 70
5.7 V ISIBILITY 77

5.8 USING EXCEPTIONS ... 79

5.9 ERRONEOUS EXECUTION 81

5.10 SU M M A R Y .. 85

vii

viii Ada QUALITY AND STYLE

CHAPTER 6 Concurrency 89
6.1 T A SK IN G ... 89

6.2 COM M UNICATION ... 94
6.3 TERM INATION ... 100

6.4 SU M M A RY ... 103

CHAPTER 7 Portability 105
7.1 FUNDAM ENTALS ... 106

7.2 NUMERIC TYPES AND EXPRESSIONS 109

7.3 STORAGE CONTROL .. 112

7.4 T A SK IN G .. 113

7.5 EX C EPT IO N S ... 115

7.6 REPRESENTATION CLAUSES AND IMPLEMENTATION-
DEPENDENT FEATURES 116

7.7 IN PUT/O UTPUT ... 119

7.8 SU M M A RY ... 120

CHAPTER 8 Reusability 123
8.1 UNDERSTANDING AND CLARITY 124

8.2 RO BU STN ESS ... 125
8.3 A DA PTA BILITY ... 130
8.4 IN D EPEN D ENCE .. 140

8.5 SU M M A RY ... 142

CHAPTER 9 Instantiation 145
9.1 HORIZONTAL SPACING 145
9.2 IN D EN TA T IO N .. 146

9.3 MORE ON ALIGNM ENT 148
9.4 PA G IN A T IO N ... 148

9.5 SOURCE CODE LINE LENGTH 148

9.6 N U M B E RS .. 149

9.7 CA PITA LIZATIO N .. 149

9.8 FILE H EA D ERS ... 149

9.9 PROGRAM UNIT SPECIFICATION HEADER 149

9.10 PROGRAM UNIT BODY HEADER 150

9.11 NAM ED ASSOCIATION 150
9.12 ORDER OF PARAMETER DECLARATIONS 151

9 .13 N E ST IN G ... 15 1

9.14 GLOBAL ASSUM PTIONS 151

CHAPTER 10 Complete Example 153

APPENDIX A - Map from Ada Language Reference
Manual to Guidelines 163

REFERENCES 169

BIBLIOGRAPHY 172

INDEX ... 175

viii

CHAPTER 1
Introduction

This book is intended to help the computer professional produce better Ada programs. It presents a set of
specific guidelines for using the powerful features of Ada in a disciplined manner. Each guideline consists of
a concise statement of the principles that should be followed, and a rationale explaining why following the
guideline is important. In most cases, an example of the use of the guideline is provided, and in some cases a
further example is included showing the consequences of violating the guideline. Possible exceptions to the
application of the guideline are explicitly noted, and further explanatory notes, including notes on how the
guideline could be automated by a tool, are provided where appropriate. Many of the guidelines are specific
enough to be adopted as corporate or project programming standards. Others require a managerial decision
on a particular instantiation before they can be used as standards. In such cases, a sample instantiation is
presented and used throughout the examples. Such instantiations should be recognized as weaker
recommendations than the guidelines themselves. These issues are discussed in Section 1.4 of this
introduction. Other sections of the introduction discuss how this book should be used by various categories
of software development personnel.

Ada was designed to support the development of high-quality, reliable, reusable, portable software. For a
number of reasons, no programming language can ensure the achievement of these desirable objectives on
its own. For example, programming must be embedded in a disciplined development process that addresses
requirements analysis, design, implementation, verification, validation and maintenance in an organized
way. The use of the language must conform to good programming practices based on well established
software engineering principles. This book is intended to help bridge the gap between these principles and
the actual practice of programming in Ada.

Clear, readable, understandable source text eases program evolution, adaptation, and maintenance. First,
such source text is more likely to be correct and reliable. Second, effective code adaptation is a prerequisite
to code reuse, a technique that has the potential for drastic reductions in system development cost. Easy
adaptation requires a thorough understandir.. of the software, this is facilitated considerably by clarity.
Finally, since maintenance (really evoluti..n) is a costly process that continues throughout the life of a
system, clarity plays a major role in keer.ag maintenance costs down. Over the entire life cycle, code has to
be read and understood far more often than it is written; the investment of writing readable, understandable
code is thus well worthwhile. Mart of the guidelines in this book are designed to promote clarity of the
source text.

There are two main aspects of code clarity. Careful and consistent layout of the source text on the page or
the screen can enhance readability dramatically. Similarly, careful attention to the structure of code can
make it easier to understand. This is true both on the small scale (e.g., by careful choice of identifier names
or by disciplined use of loops), and on the large scale (e.g., by proper use of packages). Both layout and
structure are treated by these guidelines.

Comments in source text is a controversial issue. There are arguments both for and against the view that
comments enhance readability. The biggest problem with comments in practice is that people often fail to
update them when the asscciated source text is changed. thereby making the commentary misleading.
Commentary should be minimized and largely reserved for highlighting cases where there are overriding
reasons to violate one of the guidelines. If possible, source text should use self-explanatory names for objects
and program units, and use simple, understandable program structures so that little additional commentary

2 Ada QUALITY AND STYLE

is needed. The extra effort in selecting (and entering) appropriate names, and the extra thought needed to
design clean and understandable program structures are fully justified.

Programming texts often fail to discuss overall program structure; Chapter 4 addresses this. The majority of
the guidelines in that chapter are concerned with the application of sound software engineering principles
such as information hiding and separation of concerns. The chapter is neither a textbook on nor an
introduction to these principles; rather it indicates how they can be realized using the features of Ada.

A number of other guidelines are particularly concerned with reliability and portability issues. They counsel
avoidance of language features and programming practices that either depend on properties not defined in
Ada or on properties that may vary from implementation to implementation. Some of these guidelines, such
as the one forbidding dependence on expression evaluation order, should never be violated. Others may
have to be violated in special situations such as interfacing to other systems. This should only be done after
careful deliberation, and such violations should be prominently indicated. Performance constraints are
often offered as an excuse for unsafe programming practices; this is rarely a sufficient justification.

Software tools could be used to enforce, encourage, or check conformance to many of the guidelines. At
present, such tools for Ada primarily consist of code formatters or syntax directed editors. Existing code
formatters are often parameterizable and can be instantiated to lay out code in a way consistent with many of
the guidelines in this book.

This book is intended for those involved in the actual development of software systems written in Ada.
Below, discusses how to make the most effective use of the material presented. Readers with different levels
of Ada experience and different roles in a software project will need to use the book in different ways.
Specific comments to three broad categories of software development personnel are addressed:
inexperienced Ada programmers, experienced Ada programmers, and software development managers.

1.1 HOW TO USE THIS BOOK

There are a number of ways in which this book can be used: as a reference on good Ada style; as a
comprehensive list of guidelines which will contribute to better Ada programs: or as a reference work to
consult about using specific features of the language. The book contains many guidelines, some of which are
quite complex. Learning them all at the same time should not be necessary; it is unlikely that you will be
using all the features of the language at once. However, it is recommended that all programmers (and, where
possible, other Ada project staff) make an effort to read and understand Chapters 2, 3, and 4 and Chapter 5
up to Section 5.7. Some of the material is quite difficult (for example, Section 4.2 which discusses visibility)
but it covers issues which are fundamental to the effective use of Ada, and is important for any software
professional involved in building Ada systems.

The remainder of the book covers relatively specific issues. Exceptions and erroneous execution is covered
at the end of Chapter 5, and tasking, portability and reuse is covered in Chapters 6, 7, and 8 respectively.
You should be aware of the content of this part of the book. You may be required to follow the guidelines
presented in it, but you could defer more detailed study until needed. Meanwhile, it can serve as useful
reference material about specific Ada features; for example, the discussion of floating point numbers in the
chapter on portability.

Chapter 9 is directed at software project managers. It repeats those guidelines that need to be instantiated to
be used as standards, and indicates the instantiation that has been adopted in the guidelines' examples.
Chapter 10 consists of an extended example of an Ada program that conforms to the guidelines presented.

This book is not intended as an introductory text on Ada or as a complete manual of the Ada language. It is
assumed that you already know the syntax of Ada, and have a rudimentary understanding of the semantics.
With such a background, you should find the guidelines useful, informative, and often enlightening.

If you are learning Ada you should equip yourself with a comprehensive introduction to the language such as
(Barnes 1989) or (Cohen 1986). The Ada Language Reference Manual (Department of Defense 1983)
should be regarded as a crucial companion to this book. The majority of guidelines reference the sections of
the Ada Language Reference Manual that define the language features being discussed. Appendix A cross
references sections of the Ada Language Reference Manual to the guidelines.

Throughout the book, references are given to other sources of information about Ada style and other Ada
issues. The references are listed at the end of the book, followed by a bibliography which includes them and
other relevant sources consulted during the book's preparation.

INTRODUCTION 3

1.2 TO THE NEW Ada PROGRAMMER
At first sight, Ada offers a bewildering variety of features. It is a powerful tool intended to solve difficult
problems and almost every feature has a legitimate application in some context. This makes it especially
important to use Ada's features in a disciplined and organized way. The guidelines in this book forbid the
use of few Ada features. Rather, they show how the features can be systematically deployed to write clear,
high-quality programs. Following the guidelines will make learning Ada easier and help you to master its
apparent complexity. From the beginning, you can write programs that exploit the best features of the
language in the way that the designers intended.

Programmers experienced in using another programming language are often tempted to use Ada as if it were
their familiar language, but with irritating syntactic differences. This pitfall should be avoided at all costs, it
can lead to convoluted code that subverts exactly those aspects of Ada that make it so suitable for building
high-quality systems. You must learn to "think Ada"; following the guidelines in this book and reading the
examples of their use will help you to do this as quickly and painlessly as possible.

To some degree, novice programmers learning Ada have an advantage. Following the guidelines from the
beginning helps in developing a clear programming style that effectively exploits the language. If you are in
this category, it is recommended that you adopt the guidelines for those exercises you perform as part of
learning Ada. Initially, developing sound programming habits by conce.ntrating on the guidelines themselves,
and their supporting examples, is more important than understanding the rationale for each guideline. Note
that each chapter ends with a summary of the guidelines it contains.

1.3 TO THE EXPERIENCED Ada PROGRAMMER
As an experienced programmer you are already writing code that conforms to many of the guidelines in Lhis
book. In some areas, however, you may have adopted a personal programming style that differs from that
presented here, and you might be reluctant to change. Carefully review those guidelines that are inconsistent
with your current style, make sure that you understand their rationale, and consider adopting them. The
overall set of guidelines in this book embodies a consistent approach to producing high-quality programs
which would be weakened by too many exceptions.

Another important reason for general adoption of common guidelines is consistency. If all the staff of a
project write source text in the same style, many critical project activities are easier. Consistent code
simplifies formal and informal code reviews, system integration, within-project code reuse and the provision
and application of supporting tools. In practice, corporate or project standards may require deviations from
the guidelines to be explicitly commented, so adopting a nonstandard approach may require extra work.

1.4 TO THE SOITWARE PROJECT MANAGER
Technical management plays a key role in ensuring that the software produced in the course of a project is
correct, reliable, maintainable, and portable. Management must create a project-wide commitment to the
production of high-quality code; define project-specific coding standards and guidelines; foster an
understanding of why uniform adherence to the chosen coding standards is critical to product quality; and
establish policies and procedures to check and enforce that adherence. The guidelines contained in this
book can aid such an effort.

*X\n important activity for managers is the definition of coding standards for a project or organization. These
guidelines do not, in themselves, constitute a complete set of standards, but can serve as a basis for them. A
number of guidelines indicate a range of decisions, but do not prescribe a particular decision. For example,
the second guideline in the book (Guideline 2.1.2) advocates using a consistent number of spaces for
indentation, and indicates in the rationale that 2 to 4 spaces would be reasonable. With your senior technical
staff, you should review each such guideline and arrive at a decision about its instantiation that will constitute
your project or organizational standard. To support this process, Chapter 9 of the book lists all guidelines
that need instantiation to be used as standards. It also gives a possible instantiation for each guideline that
corresponds to the decision adopted by this book, and used in the extended example of Chapter 10.

Two other areas require managerial decisions about standardization. Guideline 3.1.4 advises you to avoid
arbitrary abbreviations in object or unit names. You should prepare a glossary of acceptable abbreviations
for a project that allows the use of shorter versions of application-specific terms (e.g., FFT for Fast Fourier
Transform or SPN for Stochastic Petri Net). You should keep this glossary short and restrict it to terms which

4 Ada QUALITY AND STYLE

need to be used frequently as part of names. Having to refer continually to an extensive glossary t
understand source text makes it hard to read.

The portability guidelines given in Chapter 7 need careful attention. Adherence to them is important even if
the need to port the resulting software is not currently foreseen. Following the guidelines improve the
potential reusability of the resulting code in projects that use different Ada implementations. You should
insist that when particular project needs force the relaxation of some of the portability guidelines,
nonportable features of the source text are prominently indicated. Observing the Chapter 7 guidelines
requires definition and standardization of project- or organization-specific numeric types to use in place of
the (potentially nonportable) predefined numeric types.

Your decisions on standardization issues should be incorporated in a project or organization coding
standards document.

With coding standards in place, you need to ensure adherence to them. Probably the most important aspect
of this is gaining the wholehearted commitment of your programming staff to use them. Given this
commitment, and the example of high-quality Ada being produced by your programmers, it will be far easier
to conduct effective formal code reviews that check compliance to project standards.

Consistent coding standards work well with automatic tool support. If you have a tools group in your project
or organization, they can be tasked to acquire or develop tools to support your standards. It is very cost
effective to use tools to enforce standards. Where tools cannot be used to automatically modify code to
conform to standards, they can often be used to at least check conformance. See the automation notes
sections associated with many of the guidelines.

Some general issues concerning the management of Ada projects are discussed by (Foreman and
Goodenough 1987).

CHAPTER 2
Source Code Presentation

The physical layout of source text on the page or screen has a strong effect on its readability. This chapter
contains source code presentation guidelines intended to make the code more readable.

In addition to the general purpose guidelines, specific recommendations are made in the "instantiation"
sections. If you disagree with the specific recommendations, you may want to adopt your own set of
conventions which still follow the general purpose guidelines. Above all, be consistent across your entire
project.

An entirely consistent layout is hard to achieve or check manually. Therefore you may prefer to automate
layout with a tool for parameterized code formatting, or incorporate the guidelines into an automatic coding
template. Beware, however, that such tools are limited. Some of the guidelines and specific
recommendations presented in this section cannot be enforced by a formatting tool because they are based
on the semantics, not the syntax, of the Ada code. More details are given in the "automation notes" sections
below.

2.1 CODE FORMATrING

The "code formatting" of Ada source code affects how the code looks, not what the code does. Topics
included here are horizontal spacing, indentation, alignment, pagination, and line length. The most
important guideline is to be consistent throughout the compilation unit as well as the project.

2.1.1 Horizontal Spacing

guideline

" Use consistent spacing around delimiters.

" Use the same spacing as you would in regular prose.

instantiation

Specifically, leave at least one blank space in the following places, as shown in the examples throughout
this book. More spaces may be required for the vertical alignment recommended in subsequent

guidelines.

- Before and after the following delimiters and binary operators:
+ * ! &

- > = <= >=

- Outside of the quotes for string (") and character () literals, except where prohibited below.

- Outside, but not inside, of parentheses.

- After commas (,) and semicolons (;).

5

6 Ada QUALITY AND STYLE

Do not leave any blank spaces in the following places, even if this conflicts with the above
recommendation.

- After the plus (+) and minus (-) signs when used as unary operators.

- Inside of label delimiters (<<).

- Before and after the following:
**

- Between multiple consecutive opening or closing parentheses.

- Before commas (,) and semicolons (;).

example
REGISTER (PC) := REGISTER (A);

OPERATORPRECEDENCE_MNEMONICS : STRING := "My Dog Ain't Smart,"
& " but he obeys"

& " My Dear Aunt Sallie.";

ARRAY-NAME (INDEX) := MEMORY (BASE_ADDRESS + (INDEX * ELEMENT_LENGTH));

GETNEXTVALUE (SENSOR);

type SIGNEDWHOLE_16 is range -(2**15) .. (2**15) - 1;

rationale

It is a good idea to use whitespace around delimiters and operators because they are typically short (one
or two character) sequences which can easily get lost among the longer keywords and identifiers. Putting
whitespace around them makes them stand out. Consistency in spacing also helps by making the source
code easier to scan visually.

However, many of the delimiters (commas, semicolons, parentheses, etc.) are familiar as normal
punctuation marks. It is distracting to see them spaced differently in a computer program than in normal
text. Therefore, they should be spaced the same (no spaces before commas and semicolons, no spaces
inside of parentheses, etc.).

exception

The one notable exception to this is the colon (:). In Ada, it is useful to use the colon as a tabulator, or a
column separator (see Guideline 2.1.4). In this context, it makes sense to put spaces before and after
the colon, rather than only after as in normal text.

automation notes

The guidelines in this section are easily enforced with an automatic code formatter.

2.1.2 Indentation

guideline

" Indent and align nested control structures, continuation lines, and embedded units consistently.

" Distinguish between indentation for nested control structures and for continuation lines.

* Use spaces for indentation, not the tab character (Nissen and Wallis 1984, §2.2).

instantiation

Specifically, the following indentation conventions are recommended, as shown in the examples
throughout this book. Note that the minimum indentation is described. More spaces may be required
for the vertical alignment recommended in subsequent guidelines.

- Use the recommended paragraphing shown in the Ada Language Reference Manual (Department
of Defense 1983).

- Use three spaces as the basic unit of indentation for nesting.

- Use two spaces as the basic unit of indentation for continuation lines.

SOURCE CODE PRESENTATION 7

A label is outdented three spaces. A continuation line is indented two spaces:

<<label>> <long statement with line break>
<statement> <trailing part of same statement>

The if statement and the plain loop:

if <condition> then <name>:
<statements> loop

elsif <condition> then <statements>
<statements> exit when <condition>;

else <statements>
<statements> end loop;

end if;

Loops with the for and while iteration schemes:

<name>: <name>:
for <scheme> loop while <condition> loop

<statements> <statements>
end loop; end loop;

The block and the case statement as recommended in the Ada Language Reference Manual
(Department of Defense 1983):

<name>: case <expression> is
declare when <choice> =>

<declarations> <statements>
begin when <choice> =>

<statements> <statements>
exception when others =>

when <choice> => <statements>
<statements> end case;

when others =>
<statements>

end <name>;

These case statements save space over the the Ada Language Reference Manual (Department of
Defense 1983) recommendation and depend on very short statement lists, respectively. Whichever you
choose, be consistent.

case <expression> is case <expression> is
when <choice> => when <choice> => <statements>

<statements> <statements>
when <choice> => when <choice> => <statements>

<statements> when others => <statements>
when others => end case;

<statements>
end case;

The various forms of selective wait and the timed and conditional entry calls:

select select
when <guard> => <entry call>;

<accept statement> <statements>
<statements> or

or delay <interval>;
<accept statement> <statements>
<statements> end select;

or
when <guard> =>

delay <interval>;
<statements>

or select
when <guard> => <enter call>;

terminate; <statements>
else else

<statements> <statements>
end select; end select;

The accept statement and a subunit:

accept <specification> do separate (<parent unit>)
<statements> <proper body>

end <name>;

8 Ada QUALITY AND STYLE

Body stubs of the program units:

procedure <specification> is package body <name> is
separate: separate;

function <specification> task body <name> is

return <type> is separate;
separate;

Proper bodies of program units:

procedure <specification> is package body <name> is
<declarations> <declarations>

begin begin
<statements> <statements>

exception exception
when <choice> => when <choice> =>

<statements> <statements>
end <name>; end <name>;

function <specification> task body <name> is
return <type name> is <declarations>

<declarations> begin
begin <statements>

<statements> exception
exception when <choice> =>

when <choice> => <statements>

<statements> end <name>;
end <name>;

Context clauses on compilation units are arranged as a table and are indented so as not to obscure the
introductory line of the unit itself. Generic formal parameters do not obscure the unit itself. Function.
package, and task specifications use standard indent:

with <name>. function <specification>
<name>. return <type>;
<name>;

use <name>, package <name> is
<name>, <declarations>
<name>; private

<compilation unit> <declarations>
end <name>;

generic -- <kind of unit> <name> task type <name> is
<formal parameters> entry <declaration>

<compilation unit> end <name>;

Instantiations of generic units, and indentation of a record:

procedure <name> is Itype ... is
new <generic name> <actuals> I record

I <component list>
function <name> is case <discriminant name> is

new <generic name> <actuals>l when <choice> =>
<component list>

package <name> is I when <choice> =>
new <generic name> <actuals> <component list>

end case;

I end record;

Indentation for record alignment:
for <name> use

record <alignment clause>
<component clause>

end record;

SOURCE CODE PRESENTATION 9

example
loop

if INPUTFOUND then
COUNTCHARACTERS;

else
RESETSTATE;
DEFAULTSTRING := "This is the long string returned by"

& " default. It is broken into multiple"
& " Ada source lines "or convenience...

CHARACTERTOTAL := (FIRSTPART TOTAL * FIRST_PART_SCALEFACTOR
+ (SECONDPARTTOTAL * SECOND_PART_SCALE_FACTOR)
+ DEFAULTSTRING'length

+ DELIMITERSIZE;
end if;

end loop;

rationale

Indentation improves the readability of the code because it gives the reader a visual indicator of the
structure of the program. The levels of nesting are clearly identified by indentation and the first and last
keywords in a construct can be matched visually.

While there is much discussion on the number of spaces to indent, the reason for indentation is code
clarity. The fact that the code is indented consistently is more important than the number of spaces used
for indentation.

Additionally, the Ada Language Reference Manual (Department of Defense 1983, §1.5) says that the
layout shown in the examples and syntax rules in the LRM is the recommended code layout to be used
for Ada programs. "The syntax rules describing structured constructs are presented in a form that
corresponds to the recommended paragraphing. ... Different lines are used for parts of a syntax rule if
the corresponding parts of the construct described by the rule are intended to be on different lines. ... It
is recommended that all indentation be by multiples of a basic step of indentation (the number of spaces
for the basic step is not defined)."

It is important to indent continuation lines differently from nested control structures to make them
visually distinct. This prevents them from obscuring the structure of the code as the user scans it.
lndentir with spaces is more portable than indenting with tabs because tab characters are displayed

differentiy by different terminals and printers.

exception

According to the Ada Language Reference Manual (Department of Defense 1983, § 1.5), "... On the
other hand, if a complete construct can fit on one line, this is allowed in the recommended
paragraphing."

automation notes

The guidelines in this section are easily enforced with an automatic code formatter.

2.1.3 Alignment of Operators
guideline

0 Align operators vertically to emphasize local program structure and semantics.

example

if SLOTA >= SLOTB then
TEMPORARY SLOTA;
SLOTA SLOT_B;
SLOTB : TEMPORARY;

end if;

NUMERATOR (Ba*2) - (4 * A 0 C);
DENOMINATOR 2 0 A;
SOLUTION_ -1 -B + SQUAREROOT (NUMERATOR / DENOMINATOR);
SOLUTION_2 = B + SQUAREROOT (NUMERATOR / DENOMINATOR);

10 Ada QUALITY AND STYLE

X:= A B
+ C *D
+ E * F;

Y (A * B) + C -- basic equation

+ (2 * D) - E -- account for
- 3.5; -- error factor

rationale

Alignment makes it easier to see the position of the operators and therefore, puts visual emphasis on
what the code is doing.

The use of lines and spacing on long expressions can emphasize terms, precedence of operators, and
other semantics. It can also leave room for highlighting comments within an expression.

exceptions

If vertical alignment of operators forces a statement to be broken over two lines, and especially if Ldic

break is at an inappropriate spot, it may be preferable to relax the alignment guideline.

automation notes

The last example above shows a type of "semantic alignment" which is not typically enforced or even
preserved by automatic code formatters. If you break expressions into semantic parts and put each on a
separate line, beware of using a code formatter later. it is likely to move the entire expression to a single
line and accumulate all the comments at the end. However, there are some formatters which are
intelligent enough to leave a line break intact when the line contains a comment. With such a formatter,
the layout in the last example above could not be generated automatically, but could be preserved while
other formatting was done.

2.1.4 Alignment of Declarations

guideline

* Use vertical alignment to enhance the readability of declarations.

* Provide at most one declaration per line.

example

Variable and constant declarations can be laid out in a table with c!umns separated by the symbols
*=, and--

PROMPTCOLUMN constant 40;
QUFSTION MARK constant STRING ? "; -- prompt on error input

PROMPTSTRING constant STRING "==>

If this results in lines which are too long, they can be laid out with each part on a separate line with its
unique indentation level.

INPUTLINE_BUFFER
USERRESPONSETEXTFRAME

(others => ")- ;
-- If the declaration needed a comment, it would fit here.

Declarations of enumeration literals can be listed in one or more columns as:
type OP_CODES is

(PUSH,
POP,
ADD,
SUBTRACT,
MULTIPLY,
DIVIDE,
SUBROUTINECALL,

SUBROUTINERETURN,
BRANCH,
BRANCH ON ZERO.
BRANCHONNEGATIVE);

or, to save space:

SOURCE CODE PRESENTATION 11

type OP_CODES is

(PUSH, POP, ADD.

SUBTRACT, MULTIPLY, DIVIDE,
SUBROUTINE CALL, SUBROUTINE_RETURN, BRANCH,
BRANCHONZERO, BRANCHONNEGATIVE);

or, to emphasize related groups of values:

type OP_CODES is
(PUSH, POP,
ADD, SUBTRACT, MULTIPLY, DIVIDE,
SUBROUTINE CALL, SUBROUTINE_RETURN,
BRANCH, BRANCHONZERO, BRANCHONNEGATIVE);

rationale

Many programming standards documents require tabular repetition of names, types, initial values, and
meaning in unit header comments. These comments are redundant and can become inconsistent with
the code. Aligning the declarations themselves in tabular fashion (see the examples above) provides
identical information to both compiler and reader, enforces at most one declaration per line, and eases
maintenance by providing space for initializations and necessary comments. A tabular layout enhances
readability, thus preventing names from "hiding" in a mass of declarations. This applies to type
declarations as well as object declarations.

automation notes

Most of the guidelines in this section are easily enforced with an automatic code formatter. The one
exception is the last enumerated type example, which is laid out in rows based on the semantics of the
enumeration literals. An automatic code formatter will not be able to do this, and will likely move the
enumeration literals to different lines.

2.1.5 More on Alignment

guideline

* Align parameter modes and parentheses vertically.

instantiation

Specifically it is recommended that you:

- Place one formal parameter specification per line.

- Vertically align parameter names, colons, the reserved word in, the reserved word out, and
parameter types.

- Place the first parameter specification on the same line as the subprogram or entry name. If any of
the parameter types are forced beyond the line length limit, place the first parameter specification
on a new line indented as for continuation lines.

example

procedure DISPLAYMENU (TITLE in STRING;
OPTIONS in MENUS;
CHOICE out ALPHANUMERICS)-.

or

procedure DISPLAYMENUONPRIMARYWINDOW
(TITLE in STRING;
OPTIONS in MENUS;

CHOICE out ALPHA_NUMERICS),

or

procedure DISPLAYMENU
TITLE in STRING;
OPTIONS in MENUS;
CHOICE out ALPHANUMERICS

Aligning parentheses makes complicated relational expressions more clear:

12 Ada QUALITY AND STYLE

if (FIRST_CHARACTER not in ALPHANUMERICS) or else
(not VALIDOPTION (FIRSTCHARACTER)) then

rationale
This facilitates readability and understandability. Aligning parameter modes provides the effect of a
table with columns for parameter name, mode, type, and if necessary, parameter-specific comments.
Vertical alignment of parameters across subprograms within a compilation unit increases the readability
even more.

note

Various options are available for subprogram layout. The second example above aligns all of the
subprogram names and parameter names in a program.This has the disadvantage of occupying an
unnecessary line where subprogram names are short, and looking awkward if there is only one
parameter.

The third example above is a format commonly used to reduce the amount of editing required when
parameter lines are added, deleted, or reordered. The parentheses don't have to be moved from line to
line. However, the last parameter line is the only one without a semicolon.

The last example above shows the alignment of a multiple condition if statement. The alignment
emphasizes the variables that are tested and their relationships. The or else is by itself so the major
connective operator is not lost in the expression. This helps the reader to parse it.

automation notes
Most of the guidelines in this section are easily enforced with an automatic code formatter. The one
exception is the last example above, which shows vertical alignment of parentheses to emphasize terms
of an expression. This is difficult to achieve with an automatic code formatter unless the relevant terms
of the expression can be determined strictly through operator precedence.

2.1.6 Blank Lines

guideline
0 Use blank lines to group logically related lines of text (NASA 1987).

example
if ... then

for ... loop

end loop;

end if;

This example separates different kinds of declarations with blank lines:
type EMPLOYEERECORD is

record

NAME NAMESTRING;
DATE OF BIRTH DATE;
DATE OF HIRE DATE;
SALARY MONEY;

end record;

type DAY is
(MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY, SATURDAY,
SUNDAY);

subtype WEEKDAY is DAY range MONDAY FRIDAY;
subtype WEEKEND is DAY range SATURDAY SUNDAY;

rationale
When blank lines are used in a thoughtful and consistent manner, sections of related code are more
visible to readers.

SOURCE CODE PRESENTATION 13

automation notes
Automatic formatters do not enforce this guideline well because the decision on where to insert blank
lines is a semantic one. However, many formatters have the ability to leave existing blank lines intact.
Thus, you can manually insert the lines and not lose the effect when you run such a formatter.

2.1.7 Pagination
guideline

• Highlight the top of each package or task specification, the top of each program unit body, and the
begin and end statements of each program unit.

instantiation

Specifically, it is recommended that you:
- Use a line of dashes, beginning at the same column as the current indentation.
- Use the shorter of the two dashed lines if they are adjacent.
- Omit the dashed line above the begin.

- When putting a dashed line at the top of a compilation unit, put it before, not after, the context
clauses.

example

with BASICTYPES;
package body SPCNUMERICTYPES is

function MAX (LEFT in TINY INTEGER;
RIGHT : in TINYINTEGER)

return TINYINTEGER is
begin

if (LEFT > RIGHT) then
return LEFT;

else
return RIGHT;

end if;
end MAX;

function MIN (LEFT in TINYINTEGER;
RIGHT in TINYINTEGER)

return TINYINTEGER is
begin

if (LEFT < RIGHT) then
return LEFT;

else
return RIGHT;

-nd if;
end MIN;

begin
MAX TINYINTEGER := MIN (SYSTEMMAX, LOCALMAX);
MINTINYINTEGER MAX (SYSTEM_MIN, LOCAL_MIN);

end SPCNUMERICTYPES;

rationale

It is easy to overlook parts of program units that are not visible on the current page or screen. The page
lengths of presentation hardware and software vary widely. By clearly marking the program's logical
page boundaries (e.g., with a dashed line), you enable a reader to check quickly whether all of a
program unit is visible. Such pagination also makes it easier to scan a large file quickly, looking for a
particular program unit.

14 Ada QUALITY AND STYLE

note
This guideline does not address code layout on the physical "page" because the dimensions of such
pages vary widely and no single guideline is appropriate.

exception
If a unit contains very few declarations, then the visual distance between the top of the unit and its
"begin" is very small. In such a case, the dashed line above the "begin" is unnecessary.

automation notes

The guidelines in this section are easily enforced with an automatic code formatter.

2.1.8 Number of Statements Per Line
guideline

" Start each statement on a new line.

" Write no more than one simple statement per line.

" Break compound statements over multiple lines.

example
-- Use

if END OF FILE then
CLOSEFILE;

else
GETNEXTRECORD;

end if;

-- rather than
if ENDOFFILE then CLOSEFILE; else GET_NEXT RECORD; end if;

-- exceptional case
PUT ("A="); PUT (A); NEWLINE;
PUT ("B="); PUT (B); NEWLINE;
PUT ("C="); PUT (C); NEWLINE;

rationale

A single statement on each line enhances the reader's ability to find statements and helps prevent
statements being missed. Similarly, the structure of a compound statement is clearer when its parts are
on separate lines.

note
A source statement is any Ada language statement that is terminated with a semicolon. If the statement
is longer than the remaining space on the line, continue it on the next line. This guideline includes
declarations, context clauses, and subprogram parameters.

According to the Ada Language Reference Manual (Department of Defense 1983, §1.5), "The
preferred places for other line breaks are after semicolons".

exceptions

The example of PUT and NEWLINE statements shows a legitimate exception. This grouping of closely
related statements on the same line makes the structural relationship between the groups clear.

automation notes

The guidelines in this section are easily enforced with an automatic code formatter, with the single
exception of the last example above which shows a semantic grouping of multiple statements onto a
single line.

2.1.9 Source Code Line Length

guideline
* Adhere to a maximum line length limit for source .,de (Nissen and Wallis 1984, §2.3).

SOURCE CODE PRESENTATION 15

instantlation

Specifically, it is recommended that you:

- Limit source code line lengths to a maximum of 78 characters.

rationale
When Ada code is ported from one system to another, there may be restrictions on the record size of
source line statements, possibly for one of the following reasons: some operating systems may not
support variable length records for tape I/O; some printers and terminals support an 80-character line
width with no line-wrap. We recommend 78 because even 80 character terminals often have trouble
with lines which are exactly 80 characters long. Leaving a two character margin avoids boundary
problems which can cause spurious line wrap, etc.

Source code must sometimes be published for various reasons, and letter-size paper i- not as forgiving as
a computer listing in terms of the number of usable columns.

In addition, there are human limitations in the width of the field of view for understanding at the level
required for reading source code. These limitations correspond roughly to the 70 to 80 column range.

automation notes
The guidelines in this section are easily enforced with an automatic code formatter.

2.2 SUMMARY

• Use consistent spacing around delimiters.

• Use the same spacing as you would in regular prose.

* Indent and align nested control structures, continuation lines, and embedded units consistently.

* Distinguish between indentation for nested control structures and for continuation lines.

• Use spaces for indentation, not the tab character.

* Align operators vertically to emphasize local program structure and semantics.

• Use vertical alignment to enhance the readability of declarations.

* Provide at most one declaration per line.

* Align parameter modes ar.d parentheses vertically.

• Use blank lines to group logically related lines of text.

• Highlight the top of each package or task specification, the top of each program unit body, and the
begin and end statements of each program unit.

* Start each statement on a new line.

" Write no more than one simple statement per line.

• Break compound statements over multiple lines.

* Adhere to a maximum line length limit for source code.

16 Ada QUALITY AND STYLE

CHAPTER 3
Readability

This chapter recommends ways of using Ada features to enhance the reader's ability to read and understand
code. There are many myths about comments and readal- " ., n ne responsibility for true readability rests
more with naming and code structure than with comr. as. Haing as many comment lines as code lines
does not imply readability; it more likely J-,.rs the writer does not understand what is important to
communicate.

3.1 SPELLING
Spelling conventions in source code include rules for capitalization, use of underscores, and use of
abbreviations. If these conventions are followed consistently, the resulting code is clearer and more
readable.

3.1.1 Use of Underscores
guideline

* Use underscores to separate words in a compound name.

example

MILESPERHOUR
ENTRY-_VALUE

rationale

When an identifier consists of more than one word, it is much easier to read if the words are separated
by underscores. Indeed, there is precedent in English in which compound words are separated by a
hyphen. In addition to promoting readability of the code, if underscores are used in names, a code
formatter has more control over altering capitalization. See also Guideline 3.1.3.

3.1.2 Numbers
guideline

* Represent numbers in a consistent fashion.

" Represent literals in a radix appropriate to the problem.

" Use underscores to separate digits the same way commas (or spaces for nondecimal bases) would be
used in handwritten text.

* When using scientific notation, make the E consistently either upper or lower case.

" In an alternate base, represent the alphabetic characters in either all upper case, or all lower case.

17

18 Ada QUALITY AND STYLE

instantiation
- Decimal and octal numbers are grouped by threes beginning counting on either side of the radix

point.

- The E is always capitalized in scientific notation.

- Use upper case for the alphabetic characters representing digits in bases above 10.

- Hexadecimal numbers are grouped by fours beginning counting on either side of the radix point.

example
type MAXIMUMSAMPLES is range 1 1_000_000;
type LEGAL HEX ADDRESS is range 18#0000# . 16#FFFF#;
type LEGALOCTALADDRESS is range 8#000_000 . 8#777_777#;

AVOGADRONUMBER : constant := 8.022169E+23;

To represent the number 1/3 as a constant,

-- Use
ONETHIRD : constant 1.0/3.0;

-- Avoid this use.
ONETHIRD constant 0.33333333333333;
-- or

ONE-THIRD constant 3#0.1#; -- Yes. il really works!

rationale

Consistent use of upper case or lower case aids scanning for numbers. Underscores serve to group
portions of numbers into familiar patterns. Consistency with common use in everyday contexts is a large
part of readability.

note

If a rational fraction is represented in a base in which it has a terminating rather than repeating
representation, as 3#0. 1# does in the example above, it may have increased accuracy upon conversion to
the machine base.

3.1.3 Capitalization
guideline

* Make reserved words and other elements of the program visually distinct from each other.

instantiation
- Use lower case for all reserved words.

- Use upper case for all other identifiers.

example
case TIME OF DAY is

when BEFORENOON => GET_READYFORLUNCH;
when HIGH-NOON => EAT-LUNCH;
when AFTERNOON => GETTOWORK;

end case; -- TIME _OFDAY

rationale

Visually distinguishing reserved words allows the reader to focus on program structure alone if desired
and also aids scanning for particular identifiers.

note

(Nissen and Wallis 1984, 2. 1) states that "The choice of case is highly debatable, and that chosen for
the [Ada Language Reference Manual (Department of Defense 1983)] is not necessarily the best. The
use of lower case for reserved words is often preferred, so that they do not stand out too much.

However, lower case is generally easier to read than tpper case; words can be distinguished by their

overall -h-he, and can be found more quickly when scanning the text."

READABILITY 19

automation note
Ada names are not case sensitive. Therefore the names maxlimit, MAXLIMIT, and Max_Limit denote the
same object or entity. A good code formatter should be able to automatically convert from one style to
another, as long as the words are delimited by underscores.

3.1.4 Abbreviations
guideline

* Do not use an abbreviation of a long word as an identifier where a shorter synonym exists.

* Use a consistent abbreviation strategy.

* Do not use uncommon or ambiguous abbreviations.

• An abbreviation must save many characters over the full word to be justified.

• If a project has accepted abbreviations, maintain a list and use only abbreviations on that list.

example

Use TIMEOFRECEIPT rather than RECDTIME or RTIME.

rationale

Many abbreviations are ambiguous or unintelligible unless taken in context. As an example, TEMP could
indicate either temporary or temperature. For this reason, you should choose abbreviations carefully
when you use them.

Since very long variable names can obscure the structure of the program, especially in deeply nested
(indented) control structures, it is a good idea to try to keep identifiers short and meaningful. Use short
unabbreviated names whenever possible. If there is no short word which will serve as an identifier, then
a wel known unambiguous abbreviation is the next best choice, especially if it comes from a list of
standard abbreviations used throughout the project.

An abbreviated format for a fully qualified name can be established via the renames clause. This
capability is useful when a very long fully qualified name would otherwise occur many times in a
localized section of code (see Guideline 5.7.2).

A list of accepted abbreviations for a project provides a standard context for the use of each
abbreviation.

3.2 NAMING CONVENTIONS

Choose names which make clear the object's or entity's intended use. Ada allows identifiers to be of any
length as long as the identifier fits on a line, with all characters being significant. Identifiers are the names
used for variables, constants, program units, and other entities within a program.

3.2.1 Names
guideline

" Choose names that are as self-documenting as possible.

• Use a short synonym instead of an abbreviation (see Guideline 3.1.4).

* Use the context to shorten names.

• Reserve the best name for the variable, and the next best for the type.

* Use names given by the application, but not obscure jargon.

example

TIMEOFDAY instead of TOD

In a tree-walker, using the name LEFT instead of LEFTBRANCH is sufficient to convey the full meaning
given the context.

20 Ada QUALITY AND STYLE

rationale

These attributes can be helpful in comprehending programs. Self-documenting names require fewer
explanatory comments. Empirical studies have shown that you can further improve comprehension if
your variable names are not excessively long (Schneiderman 1986, 7). The context and application can
help greatly. The unit of measure for numeric entities can be a source of type names.

note

The acronyms EDT for Eastern Daylight Time, GMT for Greenwich Mean Time, and FFT for Fast
Fourier Transform are good names. They are commonly accepted and widely used and generally are
given by the application (but see Guideline 8.1.2). Mathematical formulas are often given using
single-letter names for variables. Continue this convention for mathematical equations where it would
recall the formula, for example:

A * (X**2) + B * X + C.

3.2.2 Type Names

guideline
" Choose a name indicative of a category.

• Consider using a plural form as a type name.

* Use specific suffixes.

* If you use suffixes, reserve them only for types.

example
type MODE TYPE is ... - too generic
type MODE NAME is ... -- specific for an enumeration
type MODE INFO is ... -- specific for a record
OPENMODE : OPENMODES; -- type name as plural of variable name.

rationale

Careful choice of type names clarifies type definitions by conveying meaning about the objects to be
declared, and clarifies declarations by indicating the purpose of the declared objects. Using categorical
or plural nouns or noun phrases as type names helps to emphasize their generic nature. Suffixes, if used,
should be sufficiently specific to convey useful information. Reserving suffixes for type names avoids
confusing them with object names which are generic in form.

note

Type names should be descriptive and should preserve the appropriate level of abstraction. For
example, EMPLOYEE_LISTS and SETS OF EMPLOYEES are better than EMPLOYEEPOINTERARRAYS because they
describe the data type without revealing the implementation. This is especially important when naming
types which are declared in a package specification, as part of an abstract interface. For types declared
internally to a unit body, a name like EMPLOYEEPOINTER may be acceptable, especially if the code in the
body explicitly manipulates the data type as a pointer.

If there is no good name to dtscribe a category of objects, use a descriptive suffix such as _CLASS,
-KIND, etc. (NASA 1987 and United Technologies 1987) However, beware that appending suffixes
makes names longer and sometimes awkward. If you use suffixes, use dierm consistently.

3.2.3 Object Names

guideline
* Use real world object names for objects.

" Use common nouns for nonboolean objects.

" Use predicate clauses or adjectives for boolean objects.

" If you use plural type names, use singular object names.

READABILITY 21

example

Nonboolean objects:

CURRENTLIST LISTS; -- noun
CLASSSCHEDULE SCHEDULETABLES; -- noun
NUMBEROFELEMENTS COUNT; -- noun phrase

Boolean objects:

USERISAVAILABLE BOOLEAN; -- predicate clause
LISTISEMPTY BOOLEAN; -- predicate clause
EMPTY BOOLEAN; -- adjective

BRIGHT BOOLEAN; -- adjective

rationale

Following conventions which relate object types and parts of speech makes code read more like text.
For example, because of the names chosen, the following code segment needs no comments:

if LISTIS_EMPTY then

NUMBEROFELEMENTS 0;
else

NUMBEROFELEMENTS LENGTHOFLIST;
end if;

note

If the program is modeling some action in a domain with previously established naming conventions, use
the conventions for the domain since they are more familiar to readers of the code.

3.2.4 Program Unit Names
guideline

• Use action verbs for procedures and entries.

" Use predicate-clauses for boolean functions.

" Use nouns for nonboolean functions.

* Give packages names that imply higher levels of organization than subprograms. Generally, these
are noun phrases that describe the abstraction provided.

* Give tasks names that imply an active entity.

* Name generic subprograms as if they were nongeneric subprograms.

" Name generic packages as if they were nongeneric packages.

* Make the generic names more general than the instantiated names.

22 Ada QUALITY AND STYLE

example

The following are sample names for elements that comprise an Ada program.

Sample procedure names:
GETNEXTTOKEN -- get is a transitive verb
CREATENEWGROUP create is a transitive verb

Sample function names for boolean-valued functions:
IS_LAST_ITEM -- predicate clause
ISEMPTY -- predicate clause

Sample function names for nonboolean-valued functions:
SUCCESSOR -- common noun

Sample package names:
TERMINALOPERATIONS -- common noun
TEXT_UTILITIES -- common noun

Sample task names:
TERMINALRESOURCE_MANAGER -- common noun that shows action

The following example shows code using the parts-of-speech naming conventions. Below is a sample
piece of code to show the clarity that results from using these conventions.

GETNEXTTOKEN (CURRENTTOKEN);
case CURRENTTOKEN is

when IDENTIFIER => PROCESS_iDENTIIER;
when NUMERIC => PROCESSNUMERIC;

end case; -- CURRENT_TOKEN

if IS_EMPTY (CURRENT_LIST) then
NUMBEROFELEMENTS 0;

else
NUMBEROFELEMENTS LENGTHOF (CURRENT_LIST);

end if;

When packages and their subprograms are named together, the resulting code is very descriptive.

STACK.IS_EMPTY -- predicate clause
STACK.TOP -- common noun with prepositional phrase

-- used as adjective

SENSOR.READING -- common noun participle with adjective

rationale

Using these naming conventions creates understandable code that reads much like natural language.
When verbs are used for actions, such as subprograms, and nouns are used for objects, such as the data
that the subprogram manipulates, code is easier to read and understand. This models a medium of
communication already familiar to a reader. Where the pieces of a program model a real-life situation,
using these conventions reduces the number of translation steps involved in reading and understanding
the program. In a sense, your choice of names reflects the level of abstraction from computer hardware
toward application requirements.

note
There are some conflicting conventions in current use for task entries. Some programmers and designers
advocate naming task entries with the same conventions used for subprograms to blur the fact that a task
is involved. Their reasoning is that if the task is reimplemented as a package, or vice versa, the names
need not change. Others prefer to make the fact of a task entry as explicit as possible to ensure that the
existence of a task with its presumed overhead is recognizable. Project-specific priorities may be useful
in choosing between these conventions.

READABILITY 23

3.2.5 Constants and Named Numbers
guideline

" Use symbolic values instead of literals wherever possible.

" Use constants instead of variables for constant values.

* Use named numbers instead of constants when possible.

" Use named numbers to replace numeric literals whose type or context is truly universal.

" Use constants for objects whose values cannot change after elaboration (Mowday 1986 and United
Technologies 1987).

* Show relationships between symbolic values by defining them with static expressions.

* Use linearly independent sets of literals.

* Use attributes like 'succ, "PRED, 'FIRST, and -LAST instead of literals wherever possible.

example

3,141 592_653_589_793 -- literal
MAX constant INTEGER 85 535: -- constant
PI constant 3.141_592; -- named number
PI / 2 -- static expression
PI -- symbolic value

Declaring Pi as a named number allows it to be referenced symbolically in the assignment statement
below:

AREA := PI * RADIUS**2: -- if radius is known.
-- instead of
AREA := 3.14159 * RADIUS**2; -- Needs explanatory comment.

Also, ASCII.BEL is more expressive than CHARACTER'VAL(8#007#).

Clarity of constant and named number declarations can be improved by using other constant and named
numbers. For example:

BYTES PER PAGE constant 512;
PAGES PERBUFFER constant 10;
BUFFERSIZE ' constant = PAGES_PERBUFFER * BYTES_PER PAGE;

-- is more self-explanatory and easier to maintain than

BUFFERSIZE : constant := 5120; -- ten pages

The following literals should be constants:

if NEWCHARACTER = $' -- "constant" that may change

if CURRENT_COLUMN = 7 -- "constant" that may change

rationale

Using identifiers instead of literals makes the purpose of expressions clear, reducing the need for
comments. Constant declarations consisting of expressions of numeric literals are safer since they need
not be computed by hand. They are also more enlightening than a single numeric literal since there is
more opportunity for embedding explanatory names. Clarity of constant declarations can be improved
further by using other related constants in static expressions defining new constants. This is not less
efficient because static expressions of named numbers are computed at compile time.

A constant has a type. A named number can only be of a universal type: universal integer or universal
real. Strong typing is enforced for identifiers but not literals. Named numbers allow compilers to
generate more efficient code than for constants and to perform more complete error checking at
compile time. If the literal contains a large number of digits (as Pi in the example above), the use of an
identifier reduces keystroke errors. If keystroke errors occur, they are easier to locate either by
inspection or at compile time.

Linear independence of literals means that the few literals that are used do not depend on one another
and that any relationship between constant or named values is shown in the static expressions. Linear
independence of literal values gives the property that if one literal value changes, all of the named
numbers of values dependent on that literal are automatically changed.

24 Ada QL.,LITY AND STYLE

The literal 1 often occurs in situations where it could be replaced by the 'succ and 'PRED attributes.
Where these attributes are used instead of the literal 1, the underlying type can be switched more easily
during maintenance between numeric and enumeration types. Another benefit of using these attributes
is that the operations are more explicit, self-documenting, and instructive than having the maintainer
answer such questions as: "If something somewhere else changes, does the 1 change to, say, 5?"

note

There are some gray areas where the literal is actually more self-documenting than a name. These are
application-specific and generally occur with universally familiar, unchangeable values such as the
following relationship:

FAHRENHEIT := 32.0 + (9.0 / 5.0) * CELSIUS;

3.3 COMMENTS
Ada comments can be either beneficial or harmful to software maintainers. They can be beneficial by
explaining aspects of the code which are otherwise not readily apparent. They can be harmful by containing
inaccurate information, and by being too numerous and not visually distinct enough, which can cause them
to obscure the structure of the code.

Comments should be minimized. They should explain design decisions, emphasize the structure of code,
and draw attention to deliberate and necessary violations of the guidelines. It is important to note that many
of the examples in this book include more comments than we would generally consider necessary or
advisable. They are present either to draw attention to the real issue that is being exemplified or to
compensate for incompleteness in the example program.

Maintenance programmers need to know the causal interaction of noncontiguous pieces of code to get a
global, more or less complete sense of the program. They typically acquire this kind of information from
mental simulation of parts of the code. Comments should be just sufficient to support this process (Soloway
et al. 1986).

This section presents general guidelines about how to write good comments, and then defines several
different classes of comments with guidelines for the use of each. The classes are: file headers, program unit
specification headers, program unit body headers, data comments, statement comments, and marker
comments.

3.3.1 General Comments
guideline

* Make the code as clear as possible to redurg the need for comments.

* Never repeat information in a comment which is readily available in the code.

• Where a coriment is required, make it concise and complete.

" Use prope, grammar and spelling in comments.

• Make cjmments visually distinct from the code.

* Comments in headers should be structured so that information can be extracted from them
automatically by a tool.

rationale

The structure and function of well written code is clear without comments. Obscure or badly structured
code is hard to understand, maintain, or reuse regardless of comments. Bad code should be improved.
not explained. Reading the code itself is the only way to be absolutely positive about what the code does.
Therefore, the code should be made as readable as possible.

Using comments to duplicate information in the code is a bad idea for several reasons. First, it is
unnecessary work which decreases productivity. Second, it is very difficult to maintain the duplication
correctly as the code is modified. When changes are made to existing code, it is compiled and tested to
make sure that it is once again correct. However, there is no automatic mechanism to make sure that the
comments are updated correctly to reflect the changes. Very often the duplicate information in a
comment becomes obsolete at the first code change, and remains so through the life of the software.

READABILITY 25

Third, when comments about an entire system are written from the limited point of view of the author of
a single subsystem, they are often incorrect from the start.

Comments are necessary to reveal information which is difficult or impossible to obtain from the code.
Subsequent sections of this book contain examples of such comments. Completely and concisely present
the required information.

The purpose of comments is to help readers understand the code. Misspelled, ungrammatical,
ambiguous, or incomplete comments defeat this purpose. If a comment is worth adding, it is worth
adding correctly in order to increase its usefulness.

Making comments visually distinct from the code, by indenting them, grouping them together into
headers, or highlighting them with dashed lines is useful because it makes the code easier to read.
Subsequent sections of this book elaborate on this point.

automation note

The guideline about storing redundant information in comments applies only to manually generated
comments. There are tools which automatically maintain information about the code (e.g., calling units,
called units, cross-reference information, revision histories, etc.), storing it in comments in the same file
as the code. Other tools read comments, but do not update them, using the information from the
comments to automatically generate detailed design documents and other reports.

The use of such tools is encouraged, and may require that you structure your header comments so they
can be automatically extracted and/or updated. Beware that tools which modify the comments in a file
are only useful if they are executed frequently enough. Automatically generated obsolete information is
even more dangerous than manually generated obsolete information, because it is more trusted by the
reader.

Revision histories are maintained much more accurately and completely by configuration management
tools. With no tool support, it is very common for an engineer to make a change and forget to update the
revigion history. If your configuration management tool is capable of maintaining r . ision histories as
comments in the source file, then take advantage of that capability, regardless of any compromise you
might have to make about the format or location of the revision history. It is better to have a complete
revision history appended to the end of the file than to have a partial one formatted nicely and
embedded in the file header.

3.3.2 File Headers

guideline

* ?ut a file header on each source file.

* Place ownership, responsibility, and history information for the file in the file header.

instantiation
- Put a copyright notice in the file header.

- Put the author's name and department in the file header.

- Put a revision history in the file header, including a summary of each change, the date, and the
name of the person making the change.

26 Ada QUALITY AND STYLE

example

-- Copyright (c) 1991, Software Productivity Consortium, Inc.
-- All rights reserved.

-- Author: J. Smith

-- Department: System Software Department

-- Revision History:
-- 7/9/91 J. Smith
-- - Added function SIZE_OF to support queries of node sizes.
-- - Fixed bug in SETSIZE which caused overlap of large nodes.
-- 7/1/91 M. Jones
-- - Optimized clipping algorithm for speed.
-- 6/25/91 J. Smith
-- - Original version.

rationale

Ownership information should be present in each file if you want to be sure to protect your rights to the
software. Furthermore, for high visibilitv, it should be the very first thing in the file.

Responsibility and revision history information should be present in each file for the sake of future
maintainers, this is the header information most trusted by maintainers because it accumulates. It does
not evolve. There is no need to ever go back and modify the author's name or the revision history of a
file. As the code evolves, the revision history should be updated to reflect each change. At worst, it will
be incomplete, it should rarely be wrong. Also, the number and frequency of changes and the number of
different people who made the changes over the history of a unit can be good indicators of the integrity
of the implementation with respect to the design.

Information about how to find the original author should be included in the file header, in addition to
the author's name, to make it easier for maintainers to find the author in case questions arise. However,
detailed information like phone numbers, mail stops, office numbers, and computer account usernames
are too volatile to be very useful. It is better to record the department for which the author was working
when the code was written. This information is still useful if the author moves offices, changes
departments, or even leaves the company, because the department is likely to retain responsibility for
the original version of the code.

3.3.3 Program Unit Specification Header
guideline

0 Put a header on the specification of each program unit.
• Place information required by the user of the program unit in the specification header.
• Do not repeat information (except unit name) in the specification header which is present in the

specification.
" Explain what the unit does, not how or why it does it.

• Describe the complete interface to the program unit, including any exceptions it can raise and any
global effects it can have.

" Do not include information about how the unit fits into the enclosing software system.

• Describe the performance (time and space) characteristics of the unit.

instantiation
- Put the name of the program unit in the header.
- Briefly explain the purpose of the program unit.

- For packages, describe the effects of the visible subprograms on each other, and how they should be
used together.

READABILITY 27

- List all exceptions which can be raised by the unit.

- List all global effects of the unit.

- List preconditions and postconditions of the unit.
- List hidden tasks activated by the unit.

- Do not list the names of parameters of a subprogram.

- Do not list the names of subprograms of a package.

- Do not list the names of all other units used by the unit.

- Do not list the names of all other units which use the unit.

example

-- AUTOLAYOUT

-- Purpose:
-- This package computes positional information for nodes and arcs of a
-- directed graph. It encapsulates a layout algorithm which is designed
-- to minimize the number of crossing arcs and to emphasize the primary
-- direction of arc flow through the graph.

-- Effects:
-- - The m), , a usage is:
-- 1. Call :FINE for each node and arc to define the graph.
-- 2. - LAYOUT to assign positions to all nodes and arcs.

-- 3 &oll POSITION OF for each node and arc to determine the

-- assigned coordinate positions.
-- - LAYOUT can be called multiple times, and recomputes the
-- positions of all currently defined nodes and arcs each time.
-- - Once a node or arc has been defined, it remains defined until

-- CLEAR is called to delete all nodes and arcs.

-- Performance:
-- This package has been optimized for time, in preference to space.
-- Layout times are on the order of N*log(N) where N is the number of

-- nodes, Out memory space is used inefficiently.
...

package AUTOLAYOUT is

..

-- DEFINE
..

-- Purpose:

-- This procedure defines one node of the current graph.

-- Exceptions:
-- NODEALREADYDEFINED
..

procedure DEFINE (NODE : NODETYPE);

..

-- LAYOUT
..

-- Purpose:
-- This procedure assigns coordinate positions to all defined nodes
-- and arcs.

-- Exceptions:
-- None.
procedure..................................LAYOUT.......................
procedure LAYOUT;

28 Ada QUALITY AND STYLE

..

-- POSITIONOF

-- Purpose:
-- This function returns the coordinate position of the specified
-- node. The default position (0,0) is returned if no position has
-- been assigned yet.
-- Exceptions:
-- NODENOTDEFINED

function POSITIONOF (NODE : NODE_TYPE) return POSITION;

end AUTOLAYOUT;

rationale

The purpose of a header comment on the specification of a program unit is to help the user understand
how to use the program unit. From reading the program unit specification and header, a user should
know everything necessary to use the unit. It should not be necessary to read the body of the program
unit. Therefore, there should be a header comment on each program unit specification, and each
header should contain all usage information which is not expressed in the specification itself. Such
information includes effects of units on each other and on shared resources, exceptions raised, and
time/space characteristics of units. None of this information can be determined from the Ada
specification of the program unit.

When you duplicate information in the header that can be readily obtained from the specification, the
inforrnation tends to become incorrect during maintenance. For example, do not make a point of listing
all parameter names, modes or types when describing a procedure. This information is already available
from the procedure specification. Similarly, do not list all subprograms of a package in the header,
unless this is necessary to make some important statement about the subprograms.

Do not include information in the header which the user of the program unit doesn't need. In particular,
do not include information about how a program unit performs its function, or why a particular
algorithm was used. This information should be hidden in the body of the program unit, to preserve the
abstraction defined by the unit. If the user knows such details and makes decisions based on that
information, the code may suffer when that information is later changed.

When d scribing the purpose of the unit, avoid referring to other parts of the enclosing software system.
It is better to say "this unit does, than to say "this unit is called by XYZ to do ...". The unit should be
written in such a way that it does not know or care which unit is calling it. This makes the unit much
more general purpose and reusable. In addition, information about other units is likely to become
obsolete and incorrect during maintenance.

Include information about the performance (time and space) characteristics of the unit. Much of this
information is not present in the Ada specification, but is required by the user. To integrate the unit into
a system, the user needs to understand the resource usage (CPU, memory, etc.) of the unit. It is
especially important to note when a subprogram call causes activation of a task that is hidden in a
package body because this task may continue to consume resources after the end of the subroutine, and
similarly for tasks activated by "with"ing a package.

exception

Where a group of program units are closely related or simple to understand, it is acceptable to use a
single header for the entire group of program units. For example, it makes sense to use a single header to
describe the behavior of MAX and MIN functions, or SIN, COS, and TAN functions, or a group of
functions to query related attributes of an object encapsulated in a package. This is especially true when
each function in the set is capable of raising the same exceptions.

3.3.4 Program Unit Body Header

guideline
" Place information required by the maintainer of the program unit in the body header.

• Explain how and why the unit performs its function, not what the unit does.

READABILITY 29

" Do not repeat information (except unit name) in the header which is readily apparent from reading
the code.

" Do not repeat information (except unit name) in the body header which is available in the
specification header.

instantiation

- Put the name of the program unit in the header.

- Record portability issues in the header.

- Summarize complex algorithms in the header.

- Record reasons for significant or controversial implementation decisions.

- Record discarded implementation alternatives, along with the reason for discarding them.

- Record anticipated changes in the header, especially if some work has already been done to the
code to make the changes easy to accomplish.

example

-- AUTOLAYGUT

-- Implementation Notes:
-- - This package uses a heuristic algorithm to minimize the number of
-- arc crossings. It does not always achieve the true minimum number
-- which could theoretically be reached. However it does a nearly
-- perfect job in relatively little time. For details about the
-- algorithm, see ...
-- Portability Issues:
-- - The native math package MATH_LIB is used for computations of
-- coordinate positions.
-- - 32-bit integers are required.
-- - No operating system specific routines are called.
-- Anticipated Changes:
-- - COORDINATE TYPE below could be changed from integer to float with
-- little effort. Care has been taken to not depend on the specific
-- characteristics of integer arithmetic.

package body AUTOLAYOUT is

-- DEFINE

-- Implementation Notes:
-- - This routine stores a node in the general purpose GRAPH data
-- structure, not the FASTGRAPH structure because ...

procedure DEFINE (NODE : NODETYPE) is
begin

end DEFINE;

-- LAYOUT
..

-- Implementation Notes:

-- - This routine copies the GRAPH data structure (optimized for fast
-- random access) into the FAST GRAPH data structure (optimized for
-- fast sequential iteration), then performs the layout, and copies
-- the data back to the GRAPH structure. This technique was
-- introduced as an optimization when the algorithm was found to be
-- too slow, and it produced an order of magnitude improvement.
..
procedure LAYOUT is

begin

end LAYOUT;

30 Ada QUALITY AND STYLE

-- POSITIONOF

function POSITION_OF (NODE : NODE_TYPE) return POSITION is
begin

end POSITIONOF;

end AUTOLAYOUT;

rationale

The purpose of a header comment on the body of a program unit is to help the maintainer of the
program unit to understand the implementation of the unit, including tradeoffs among different
techniques. Be sure to document all decisions made during implementation to prevent the maintainer
from making the same mistakes you made. One of the most valuable comments to a maintainer is a clear
description of why a change being considered will not work.

The header is also a good place to record portability concerns. The maintainer may have to port the
software to a different environment and will benefit from a list of nonportable features of which the
author was aware. Furthermore, the act of collecting and recording portability issues focuses the
author's attention on these issues and may result in more portable code from the start.

Summarize complex algorithms in the header if the code is difficult to read or understand without such a
summary, but do not merely paraphrase the code. Such duplication is unnecessary and hard to
maintain. Similarly, do not repeat the information from the header of the program unit specification.

note

It is often the case that a program unit is self-explanatory enough that it requires no body header to
explain how it is implemented or why. In such a case, omit the header entirely, as in the case with
POSITIONOF above. Be sure, however, that the header you omit truly contains no information. For
example, consider the difference between the two header sections:

-- Implementation Notes: None.

and

-- Non-Portable Features: None.

The first is a message from the author to the maintainer saying "I can't think of anything else to tell you"
while the second may mean "I guarantee that this unit is entirely portable."

3.3.5 Data Comments
guideline

" Comment all data types. objects, and exceptions unless their names are completely self-explanatory.

" Include information on the semantic structure of complex pointer-based data structures.

* Include information about relationships which are maintained between data objects.

" Do not include comments which merely repeat the information in the name.

example

Objects can be grouped by purpose and commented as:

READABILITY 31

-- Current position of the cursor in the currently selected text buffer,
-- and the most recent position explicitly marked by the user.

-- Note: It is necessary to maintain both current and desired column
-- positions because the cursor cannot always be displayed in
-- the desired position when moving between lines of different
-- lengths.

DESIRED COLUMN : COLUMN_COUNTERS;
CURRENT COLUMN : COLUMNCOUNTERS;
CURRENT ROW ROW_COUN7ERS;
MARKED_COLUMN COLUMN COUNTERS;

MARKEDROW : ROW_COUNTERb;

The conditions under which an exception is raised should be commented:

-- Exceptions

NODEALREADY_DEFINED : exception; -- Raised when an attempt is made to
-- define a node with an identifier
-- which already defines a node.

NODENOTDEFINED : exception; -- Raised when a reference is made
-- to a node which has not been
-- defined.

Here is a more complex example, involving multiple record and access types which are used to form a
complex data structure:

-- These data structures are used to store the graph during the layout
-- process. The overall organization is a sorted list of "ranks, each
-- containing a sorted list of nodes, each containing a list of incoming
-- arcs and a list of outgoing arcs.

-- The lists are doubly linked to support forward and backward passes
-- for sorting. Arc lists do not need to be doubly linked because
-- order of arcs is irrelevant.

-- The nodes and arcs are doubly linked to each other to support efficient
-- lookup of all arcs to/from a node. as well as efficient lookup of the
-- source/target node of an arc.

32 Ada QUALITY AND STYLE

type ARCS;
type ARC_PTRS is access ARCS;
type ARCS is

record
ID ARC_TYPE; -- Unique arc ID supplied by the user.
SOURCE NODEPTRS;
TARGET NODEPTRS;
NEXT : ARC_PTRS;

end record,

type NODES;
type NODEPTRS is access NODES;

type NODES is
record

ID NODETYPE; -- Unique node ID supplied by the user.
ARCS IN ARCPTRS;
ARCSOUT ARCPTRS;
NEXT : NODEPTRS;
PREVIOUS NODEPTRS;

end record;

type RANKS;
type RANKPTRS is access RANKS;
type RANKS is

record
NUMBER LEVELTYPE; -- Computed ordinal number of the rank.
FIRSTNODE NODEPTRS;
LAST NODE NODEPTRS;
NEXT RANKPTRS;
PREVIOUS RANKPTRS;

end record;

FIRSTRANK : RANK_PTRS;LASTRANK : RANK_PTRS;

rationale

It is very useful to add comments explaining the purpose, structure, and semantics of the data structures.
Many maintainers look at the data structures first when trying to understand the implementation of a
unit. Understanding the data which can be stored, along with the relationships between the different
data items, and the flow of data through the unit is an important first step in understanding the details of
the unit.

In the first example above, the names CURRENT_COLUMN and CURRENT_ROW are relatively self-explanatory.
The name DESIRED_COLUMN is also well-chosen, but leaves the reader wondering what the relationship is
between the current column and the desired column. The comment explains the reason for having both.

Another advantage of commenting the data declarations is that the single set of comments on a
declaration can replace multiple sets of comments which might otherwise be needed at various places in
the code where the data is manipulated. In the first example above, the comment briefly expands on the
meaning of "current" and "marked," stating that the "current" position is the location of the cursor, the
"current" position is in the current buffer, and the "marked" position was marked by the user. This
comment, along with the mnemonic names of the variables, greatly reduces the need for comments at
individual statements throughout the code:

It is important to document the full meaning of exceptions and under what conditions they can be
raised, as shown in the second example above, especially when the exceptions are declared in a package
specification. The reader has no other way to find out the exact meaning of the exception (without
reading the code in the package body).

Grouping all the exceptions together, as shown in the second example above, can provide the reader
with the effect of a "glossary" of special conditions. This is useful when many different subprograms in
the package can raise the same exceptions. For a package in which each exception can be raised by only
one subprogram, it may be better to group related subprograms and exceptions together.

When commenting exceptions, it is better to describe the meaning of the exception in general terms
than to list all the subprograms that can cause the exception to be raised, such a list is harder to
maintain. When a new routine is added in the future, it is likely that these lists will not be updated. Also,
this information is already present in the comments describing the subprograms, where all exceptions

READABILITY 33

that can be raised by the subprogram should be listed. Lists of exceptions by subprogram are more useful
and easier to maintain than lists of subprograms by exception.

In the third example above, the names of the record fields are chosen to be short and mnemonic, but
they are not completely self-explanatory. This is often the case with complex data structures involving
access types. There is no way to choose the record and field names so that they completely explain the
overall organization of the records and pointers into a nested set of sorted lists. The comments shown
are useful in this case. Without them, the reader would not know which lists are sorted, which lists are
doubly linked, or why. The comments express the intent of the author with respect to this complex data
structure. The maintainer still has to read the code if he wants to be sure that the double links are all
properly maintained. Keeping this in mind when he reads the code makes it much easier for him to find
a bug where one pointer is updated and the opposite one is not.

3.3.6 Statement Comments
guideline

* Minimize comments embedded among statements.

* Use comments only to explain parts of the code which are not obvious.

* Comment intentional omissions from the code.

* Do not use comments to paraphrase the code.

* Do not use comments to explain remote pieces of code, such as subprograms called by the current
unit.

* Where comments are necessary, make them visually distinct from the code.

example

The following is an example of very poorly commented code:

-- Loop through all the strings in the array STRINGS, converting them to
-- integers by calling CONVERTTOINTEGER on each one, accumulating the
-- sum of all the values in SUM, and counting them in COUNT. Then
-- divide SUM by COUNT to get the average and store it in AVERAGE.
-- Also, record the maximum number in the global variable MAXNUMBER.
for I in STRINGS'range loop

-- Convert each string to an integer value by looping through the
-- characters which are digits, until a non-digit is found, taking
-- the ordinal value of each, subtracting the ordinal value of '0',
-- and multiplying by 10 if another digit follows. Store the result
-- in NUMBER.
NUMBER := CONVERTTO INTEGER (STRINGS (I));
-- Accumulate the sum of the numbers in TOTAL.
SUM := SUM + NUMBER:
-- Count the numbers.
COUNT := COUNT + 1;
-- Decide whether this number is more than the current maximum.
if NUMBER > MAXNUMBER then

-- Update the global variable MAXNUMBER.
MAXNUMBER := NUMBER;

end if;
end loop;
-- Compute the average.
AVERAGE := SUM / COUNT:

The following is improved by not repeating things in the comments which are obvious from the code, not
describing the details of what goes in inside of CONVERTTOINTEGER, deleting an erroneous comment (the

34 Ada QUALITY AND STYLE

one on the statement which accumulates the sum), and making the few remaining comments more
visually distinct from the code.

..

-- Compute the average.
..

for I in STRINGS'range loop
NUMBER CONVERTTOINTEGER (STRINGS (I));
SUM := SUM + NUMBER:
COUNT COUNT + 1;
if NUMBER > MAXNUMBER then

MAXNUMBER := NUMBER;
-- Note: The global MAX NUMBER is computed
-- here for efficiency.

end if;
end loop;

AVERAGE := SUM / COUNT;

rationale

The improvements shown in the example above are not improvements merely by reducing the number
of comments; they are improvements by reducing the number of useless comments.

Comments which paraphrase the code, or explain obvious aspects of the code have no value. They are a
waste of effort for the author to write and the maintainer to update. Therefore, they often end up
becoming incorrect. Such comments also clutter the code, hiding the few important comments.

Comments which describe what goes on inside of another unit violate the principle of information
hiding. The details about CONVERT TO INTEGER deleted above are irrelevant to the calling unit, and are
better left hidden in case the algorithm ever changes. Examples which explain what goes on elsewhere in
the code are very difficult to maintain, and almost always become incorrect at the first code
modification.

The advantage of making comments visually distinct from the code is that it makes the code easier to
scan, and the few important comments stand out better. Highlighting unusual or special code features
indicates that they are intentional. This assists maintainers by focusing attention on code sections that
are likely to cause problems during maintenance or when porting the program to another
implementation.

Comments should be used to document code that is nonportable, implementation-dependent,
environment-dependent, or tricky in any way. They notify the reader that something unusual was put
there for a reason. A beneficial comment would be one explaining a work-around for a compiler bug. If
you use a lower level (not "ideal" in the software engineering sense) solution, comment it. Information
included in the comments should state why you used that particular construct. Also include
documentation of the failed attempts, e.g., using a higher level structure. This type of comment is useful
to maintainers for historical purposes. Show the reader that a significant amount of thought went into the
choice of a construct.

Finally, comments should be used to explain what is not present in the code, as well as what is present. If
you make a conscious decision to not perform some action, like deallocating a data structure with which
you appear to be finished, be sure to add a comment explaining why not. Otherwise, a maintainer may
notice the apparent omission and "correct" it later, introducing an error.

note

Further improvements could be made on the above example by declaring the variables COUNT and sum in
a local block so that their scope is limited and their initializations occur near their usage. For example,
by naming the block COMPUTE_AVERAGE or by moving the code into a function called AVERAGEOF. The
computation of MAXNUMBER could also be separated from the computation of AVERAGE. However, those
changes are the subject of other guidelines; this example is intended only to illustrate the proper use of
comments.

3.3.7 Marker Comments

guideline

Use pagination markers to mark program unit boundaries (Guideline 2.1.7).

READABILITY 35

Repeat the unit name in a comment to mark the begin of a package body, subprogram body, task
body, or block if the begin is preceded by declarations.

For long or heavily nested if and case statements, mark the end of the statement with a comment
summarizing the condition governing the statement.

For long or heavily nested if statements, mark the else and elsif parts with a comment
summarizing the conditions governing this portion of the statement.

example
if AFOUND then

elsif B_FOUND then -- A was not found

else -- A and B were both not found

if COUNT = MAX then

end if;

end if; -- A_FOUND

package body ABSTRACT_STRINGS is

procedure CATENATE(...) is

end CATENATE;

begin -- ABSTRACT_STRINGS

end ABSTRACTSTRINGS;

rationale

Marker comments emphasize the structure of code and make it easier to scan. They can be lines that
separate sections of code or descriptive tags for a construct. They help the reader in resolving questions
about the current position in the code. This is more important for large units than for small ones. A short
marker comment fits on the same line as the reserved word with which it is associated. Thus, it adds
information without clutter.

The if, elsif, else, and end if of an if statement are oftea separated by long sequences of statements,
sometimes involving other if statements. As shown in the first example above, marker comments
emphasize the association of the keywords of the same statement over a great visual distance. Marker
comments are not necessary with the block statement and loop statement because the syntax of these
statements allows them to be named, with the name repeated at the end. Using these names is better
than using marker comments because the compiler verifies that the names at the beginning and end
match.

The sequence of statements of a package body is often very far from the first line of the package. Many
subprogram bodies each containing many begin lines may occur first. As shown in the second example
above, the marker comment emphasizes the association of the begin with the package.

note

Repeating names and noting conditional expressions clutters the code if overdone. It is visual distance.
especially page breaks, that makes marker comments beneficial.

36 Ada QUALITY AND STYLE

3.4 USING TYPES
Strong typing promotes reliability in software. The type definition of an object defines all legal values and
operations and allows the compiler to check for and identify potential errors during compilation. In
addition, the rules of type allow the compiler to generate code to check for violations of type constraints at
execution time. Using these Ada compilers features facilitates earlier and more complete error detection
than that which is available with less strongly typed languages.

3.4.1 Declaring Types

guideline

" Limit the range of scalar types as much as possible.

* Seek information about possible values from the application.

• Do not overload any of the type names in package STANDARD.

• Use subtype declarations to improve program readability (Booch 1987).

• Use derived types and subtypes in concert (see Guideline 5.3.1).

example

subtype CARD IMAGE is STRING (1 .. 80);
INPUTLINE : CARDIMAGE := (others =>

-- restricted integer type:
type DAYOF LEAPYEAR is range 1 .. 366;
subtype DAY OFNONLEAPYEAR is DAYOFLEAP YEAR range 1 .. 365;

By the following declaration, the programmer means, "I haven't the foggiest idea how many," but the
actual range will show up buried in the code or as a system parameter:

EMPLOYEECOUNT : INTEGER;

rationale

Eliminating meaningless values from the legal range improves the compiler's ability to detect errors
when an object is set to an invalid value. This also improves program readability. In addition, it forces
you to think carefully about each use of objects declared to be of the subtype.

Different implementations provide different sets of values for most of the predefined types. A reader
car.not determine the intended range from the predefined names. This situation is aggravated when the
predefined names are overloaded.

The names of an object and its subtype can make clear their intended use and document low-level
design decisions. The example above documents a design decision to restrict the software to devices
whose physical parameters are derived from the characteristics of punch cards. This information is easy
to find for any later changes, enhancing program maintainability.

Declaration of a subtype without a constraint is one method for renaming a type [Ada Language
Reference Manual (Department of Defense 1983, §8.5)].

Types can have highly constrained sets of values without eliminating useful values. Usage as described in
Guideline 5.3.1 eliminates many flag variables and type conversions within executable statements. This
renders the program more readable while allowing the compiler to enforce strong typing constraints.

note

Subtype declarations do not define new types, only constraints for existing types.

Recognize that any deviation from this guideline detracts from the advantages of the strong typing
facilities of the Ada language.

3.4.2 Enumeration Types

guideline

* Use enumeration types instead of numeric codes.

" Use representation clauses to match requirements of external devices.

READABILITY 37

example
-- Use

type COLORS is
(BLUE,
RED,
GREEN,
YELLOW,;

-- rather than

BLUE constant 1;
RED constant 2;
GREEN constant 3;
YELLOW constant 4;

-- and add the following if necessary.

for COLORS use
(BLUE => 1,
RED => 2,
GREEN => 3.
YELLOW => 4):

rationale

Enumerations are more robust than numeric codes; they leave less potential for errors resulting from
incorrect interpretation, and from additions to and deletions from the set of values during maintenance.
Numeric codes are holdovers from languages that have no user-defined types.

In addition, Ada provides a number of attributes ('los, -VAL, 'SUCC, 'PRED, 'IMAGE, and 'VALUE) for
enumeration types which, when used, are more reliable than user-written operations on encodings.

A numeric code might at first seem appropriate to be certain that specific values match requirements for
signals on control lines or expected inputs from sensors. These situations instead call for a
representation clause on the enumeration type. The representation clause documents the "encoding."
If the program is properly structured to isolate and encapsulate hardware dependencies (see Guideline
7.1.5), the numeric code ends up in an interface package where it can be easily found and replaced,
should the requirements change.

3.5 SUMMARY

spelling
" Use underscores to separate words in a compound name.

" Represent numbers in a consistent fashion.

* Represent literals in a radix appropriate to the problem.

* Use underscores to separate digits the same way commas (or spaces for nondecimal bases) would be
used in handwritten text.

* When using scientific notation, make the E consistently either upper or lower case.

" In an alternate base, represent the alphabetic characters in either all upper case, or all lower case.

* Make reserved words and other elements of the program visually distinct from each other.

" Do not use an abbreviation of a long word as an identifier where a shorter synonym exists.

" Use a consistent abbreviation strategy.

" Do not use uncommon or ambiguous abbreviations.

• An abbreviation must save many characters over the full word to be justified.

• If a project has accepted abbreviations, maintain a list and use only abbreviations on that list.

naming conventions
0 Choose names that are as self-documenting as possible.

38 Ada QUALITY AND STYLE

" Use a short synonym instead of an abbreviation.

• Use the context to shorten names.

• Reserve the best name for the variable, and the next best for the type.

• Use names given by the application, but not obscure jargon.

• Choose a name indicative of a category.

" Consider using a plural form as a type name.

• Use specific suffixes.

• If you use suffixes, reserve them only for types.

• Use real world object names for objects.

" Use common nouns for nonboolean objects.

• Use predicate clauses or adjectives for boolean objects.

• If you use plural type names, use singular object names.

• Use action verbs for procedures and entries.

* Use predicate-clauses for boolean functions.

* Use nouns for nonboolean functions.

• Give packages names that imply higher levels of organization than subprograms. Generally, these
are noun phrases that describe the abstraction provided.

• Give tasks names that imply an active entity.

" Name generic subprograms as if they were nongeneric subprograms.

• Name generic packages as if they were nongeneric packages.

" Make the generic names more general than the instantiated names.

• Use symbolic values instead of literals wherever possible.

" Use constants instead of variables for constant values.

" Use named numbers instead of constants when possible.

• Use named numbers to replace numeric literals whose type or context is truly universal.

• Use constants for objects whose values cannot change after elaboration.

" Show relationships between symbolic values by defining them with static expressions.

" Use linearly independent sets of literals.

" Use attributes like 'succ, "PRED, 'FIRST, and 'LAST instead of literals wherever possible.

comments
• Make the code as clear as possible to reduce the need for comments.

• Never repeat information in a comment which is readily available in the code.

• Where a comment is required, make it concise and complete.

* Use proper grammar and spelling in comments.

" Make comments visually distinct from the code.

• Comments in headers should be structured so that information can be extracted from them
automatically by a tool.

" Put a file header on each source file.

• Place ownership, responsibility, and history information for the file in the file header.

" Put a header on the specification of each program unit.

" Place information required by the user of the program unit in the specification header.

READABILITY 39

• Do not repeat information (except unit name) in the specification header which is present in the
specification.

" Explain what the unit does, not how or why it does it.

* Describe the complete interface to the program unit, including any exceptions it can raise and any
global effects it can have.

" Do not include information about how the unit fits into the enclosing software system.

" Describe the performance (time and space) characteristics of the unit.

" Place information required by the maintainer of the program unit in the body header.

* Explain how and why the unit performs its function, not what the unit does.

" Do not repeat information (except unit name) in the header which is readily apparent from reading
the code.

* Do not repeat information (except unit name) in the body header which is available in the
specification header.

• Comment all data types, objects, and exceptions unless their names are completely self-explanatory.

* Include information on the semantic structure of complex pointer-based data structures.

• Include information about relationships which are maintained between data objects.

• Do not include comments which merely repeat the information in the name.

" Minimize comments embedded among statements.

" Use comments only to explain parts of the code which are not obvious.

" Comment intentional omissions from the code.

• Do not use comments to paraphrase the code.

• Do not use comments to explain remote pieces of code, such as subprograms called by the current
unit.

" Where comments are necessary, make them visuall." distinct from the code.

" Use pagination markers to mark program unit boundaries.

" Repeat the unit name in a comment to mark the begin of a package body, subprogram body, task
body, or block if the begin is preceded by declarations.

• For long or heavily nested if and case statements, mark the end of the statement with a comment
summarizing the condition governing the statement.

• For long or heavily nested if statements, mark the else and elsif parts with a comment
summarizing the conditions governing this portion of the statement.

using types
* Limit the range of scalar types as much as possible.

" Seek information about possible values from the application.

" Do not overload any of the type names in package STANDARD.

" Use subtype declarations to improve program readability.

* Use derived types and subtypes in concert.

" Use enumeration types instead of numeric codes.

" Use representation clauses to match requirements of external devices.

40 Ada QUALITY AND STYLE

CHAPTER 4
Program Structure

Proper structure improves program clarity. This is analogous to readability on lower levels and facilitates the
use of the readability guidelines (Chapter 3). The various program structuring facilities provided by Ada
were designed to enhance overall clarity of design. These guidelines show how to use these facilities for their
intended purposes.

Abstraction and encapsulation are supported by the package concept and by private types. Related data and
subprograms can be grouped together and seen by a higher level as a single entity. Information hiding is
enforced via strong typing and by the separation of package and subprogram specifications from their
bodies. Additional Ada language elements that impact program structure are exceptions and tasks.

4.1 HIGH-LEVEL STRUCTURE

Well-structured programs are easily understood, enhanced, and maintained. Poorly structured programs are
frequently restructured during maintenance just to make the job easier. Many of the guidelines listed below
are often given as general program design guidelines.

4.1.1 Separate Compilation Capabilities
guideline

• Place the specification of each library unit package in a separate file from its body.

* Create an explicit specification, in a separate file, for each library unit subprogram.

" Use subunits for the bodies of large units which are nested in other units.

" Place each subunit in a separate file.

" Use a consistent file naming convention.

example

The file names below illustrate one possible file organization and associated consistent naming
convention. The library unit name is used for the body. A trailing underscore indicates the specification,
and any files containing subunits use names constructed by separating the body name from the subunit
name with two underscores.

TEXT IO .ADA -- the specification
TEXT_IO.ADA -- the body
TEXT IO INTEGERIO.ADA -- a subunit
TEXT 10 FIXED_IO.ADA -- a subunit

TEXT 10 FLOATIO.ADA -- a subunit
TEXTIOENUMERATION-IO.ADA -- a subunit

rationale

The main reason for the emphasis on separate files in this guideline is to minimize the amount of
recompilation required after each change. Typically, during software development, bodies of units are

41

42 Ada QUALITY AND STYLE

updated far more often than specifications. If the body and specification reside in the same file. then the
specification will be compiled each time the body is compiled, even though the specification has not
changed. Because the specification defines the interface between the unit and all of its users, this
recompilation of the specification typically makes recompilation of all users necessary, in order to verify
compliance with the specification. If the specifications and bodies of the users also reside together, then
any users of these units will also have to be recompiled, and so on. The ripple effect can force a huge
number of compilations which could have been avoided, severely slowing the development and test
phase of a project. This is why we suggest placing specifications of all library units (nonnested units) in
separate files from their bodies.

For the same reason, use subunits for large nested bodies, and put each subunit in its own file. This
makes it possible to modify the body of the one nested unit without having to recompile any of the other
units in the body. This is recommended for large units because changes are more likely to occur in large
-nk L'hiair .. bmlzlnl ones.

An additional benefit of using multiple separate files is that it allows different implementers to modify
different parts of the system at the same time with conventional editors which do not allow multiple
concurrent updates to a single file.

Finally, keeping bodies and specifications separate makes it possible to have multiple bodies for the
same specification, or multiple specifications for the same body. Although Ada requires that there be
exactly one specification per body in a system at any given time, it can still be useful to maintain multiple
bodies or multiple specifications for use in different builds of a system. For example, a single
specification may have multiple bodies, each of which implements the same functionality with a different
tradeoff of time versus space efficiency. Or, for machine-dependent code, there may be one body for
each target machine. Maintaining multiple package specifications can also be useful during development
and test. You may develop one specification for delivery to your customer and another for unit testing.
The first one would export only those subprograms intended to be called from outside of the package
during normal operation of the system. The second one would export all subprograms of the package so
that each of them could be independently tested.

A consistent file naming convention is recommended to make it easier to manage the large number of
files which may result from following this guideline.

4.1.2 Subprograms

guideline
" Use subprograms to enhance abstraction.

" Restrict each subprogram to the performance of a single action (NASA 1987).

example

Your program is required to output text to many types of devices. Because the devices would accept a
variety of character sets, the proper way to do this is to write a subprogram to convert to the required
character set within the subprogram that writes out the data. This way, the output subprogram has one
purpose and the conversions are done elsewhere.

PROGRAM STRUCTURE 43

procedure OUTPUTTODEVICE (OUTPUTDATA in TEXT_DATA;
DEVICE in DEVICENAME;

STATUS out ERRORCODES) is

-- local declarations
begin -- OUTPUTTODEVICE

case DEVICE.CHARACTERSET is
when LIMITEDASCII =>

CONVERTTOUPPERCASE (ORIGINAL_DATA => OUTPUTDATA.
UPPERCASEDATA => UPPEROUTPUTDATA);

when EXTENDED_ASCII =>

when EBCDIC =>

end case; -- DEVICE TYPE.CHARACTER_SET

end OUTPUTTODEVICE;

rationale

Subprograms are an extremely effective and well-understood abstraction technique. Subprograms
increase program readability by hiding the details of a particular activity. It is not necessary that a
subprogram be called more than once to justify its existence.

The case statement in the example is more readable and understandable with the bodies of the
conversion routines elsewhere, and the meaningful subprogram names enhance the understanding of
the purpose of the case statement (see Guideline 3.2.4).

4.1.3 Functions

guideline
0 When writing a function, make sure it has no side effects.

rationale

A side effect is a change to any variable that is not local to the subprogram. This includes changes to
variables by other subprograms and entries during calls from the function if the changes persist after the
function returns. Side effects are discouraged because they are difficult to understand and maintain.
Additionally, the Ada language does not define the order in which functions are evaluated when they
occur in expressions or as actual parameters to subprograms. Therefore, a program which depends on
the order in which side effects of functions occur is erroneous. Avoid using side effects anywhere.

exception

There are a few cases in which functions with side effects are an accepted practice. One such case is a
random number generator. Others, such as recording performance analysis data or information for
recovery, have little to do with the application.

4.1.4 Packages

guideline
" Use packages for information hiding.

" Use packages with private types for abstract data types.

• Use packages to model abstract entities appropriate to the problem domain.

" Use packages to group together related type and object declarations (e.g., common declarations for
two or more library units).

* Use packages to group together related program units for configuration control or visibility reasons
(NASA 1987).

* Encapsulate machine dependencies in packages. Place a software interface to a particular device in
a package to facilitate a change to a different device.

44 Ada QUALITY AND STYLE

* Place low-level implementation decisions or interfaces in subprograms within packages.

• Use packages and subprograms to encapsulate and hide program details that may change (Niss i
and Wallis 1984).

example

A package called BACKING_STORAGE_INTERFACE could contain type and subprogram declarations to
support a generalized view of an external memory system (such as a disk or drum). Its internals may, in
turn, depend on other packages more specific to the hardware or operating system.

rationale

Packages are the principal structuring facility in Ada. They are intended to be used as direct support for
abstraction, information hiding. and modularization. For example, they are useful for encapsulaung
machine dependencies as an aid to portability. A single specification can have multiple bodies isolating
implementation-specific information so other parts of the code do not need to change.

Encapsulating areas of potential change helps to minimize the effort required to implement that change
by preventing unnecessary dependencies among unrelated parts of the system.

4.1.5 Functional Cohesion

guideline

" Make each package serve a single purpose.

" Use packages to group functionally related data, types, and subprograms.

* Avoid collections of unrelated objects and subprograms (NASA 1987 and Nissen and Wallis 1984).

example

As a bad example, a package named PROJECTDEFINITIONS is obviously a "catch all" for a particular
project and is likely to be a jumbled mess. It probably has this form to permit project members to
incorporate a single with clause into their software.

Better examples are packages called DISPLAY FORMATDEFINITIONS, containing all the types and constar:ts
needed by some specific display in a specific format, and CARTRIDGE_TAPE_HANDLER, containing all the
types, constants, and subprograms which provide an interface to a special purpose device.

rationale

See also Guideline 5.4.1 on Heterogeneous Data.

The degree to which the entities in a package are related has a direct impact on the ease of
understanding packages and programs made up of packages. There are different criteria for grouping,
and some criteria are less effective than others, Grouping the class of data or activity (e.g., initialization
modules) or grouping data or activities based on their timing characteristics is less effective than
grouping based on function or need to communicate through data (Charrette 1986 paraphrased).

note

Traditional subroutine libraries often group functionally unrelated subroutines. Even such libraries
should be broken into a collection of packages each containing a logically cohesive set of subprograms.

4.1.6 Data Coupling

guideline

• Avoid putting variables in package specifications.

example

This is part of a compiler. Both the package handling error messages and the package containing the
code generator need to know the current line number. Rather than storing this in a shared variable of
type NATURAL, the information is stored in a package that hides the details of how such information is
represented, and makes it available with access routines.

PROGRAM STRUCTURE 45

package COMPILATION_STATLS is

function SOURCELINENUMBER return LINE_RANGE;
end COMPILATIONSTATUS;

with COMPILATIONSTATUS;

package ERRORMESSAGEPROCESSING is
-- Handle compile-time diagnostic.

end ERRORMESSAGEPROCESSING;

with COMPILATION_STATUS;

package CODEGENERATION is
-- Operations for code generation.

end CODEGENERATION;

rationale

Strongly coupled program un.ts can be difficult to debug and very difficult to maintain. By protecting
shared data with access functions, the coupling is lessened. This prevents dependence on the data
structure and access to the data can k- controlled.

4.1.7 Tasks
guideline

* Use tasks to model abstract, asynchronous entities within the problem domain.

* Use tasks to control or synchronize access to tasks or other asynchronous entities (e.g.,
asynchronous I/O, peripheral devices, interrupts).

* Use tasks to define concurrent algorithms for multiprocessor architectures.

* Use tasks to perform concurrent, cyclic, or prioritized activities (NASA 1987).

rationale

The rationale for this guideline is given under Guideline 6. 1. 1. Chapter 6 discusses tasking in more
detail.

4.2 VISIBILITY
Ada's ability to enforce information hiding and separation of concerns through its visibility controlling
features is one of the most important advantages of the language, particularly when "pieces of a large system
are being developed separately." Subverting these features, for example by excessive reliance on the use
clause, is wasteful and dangerous. See also Section 5.7.

4.2.1 Minimization of Interfaces

guideline

* Put only what is needed for the use of a package into its specification.

* Minimize the declaration of objects in package specifications (Nissen and Wallis 1984).

* Do not include extra operations simply because they are easy to build.

* Minimize the context (with) clauses in a package specification.

* Reconsider subprograms which seem to require large numbers of parameters.

* Do not manipulate global data within a subprogram or package merely to limi, the number of
parameters.

* Avoid unnecessary visibility; hide the implementation details of a program unit from its users.

46 Ada QUALITY AND STYLE

example

package TELEPHONE_BOOK is

type ENTRIES is limited private;
procedure SET_NAME (...);

procedure INSERT_ENTRY (.
procedure DELETEENTRY .
..

private
type ENTRYINFO;
type ENTRIES is access ENTRY_INFO;

end TELEPHONEBOOK;
...

packaga body TELEPHONEBOOK is

t;vv ENTRYINFO is
record

-- Full details of record for an entry
end record;

i'IRST_EiTRY : ENTRIES; ..

procedure INSERT_ENTRY .) is
begin

end INSERT_ENTRY;

procedure DELETE_ENTRY () is
begin

end DELETE_ENTRY;

end TELEPHONEBOOK;

rationale

For each entity in the specification, give careful consideration to whether it could be moved to the body.
The fewer the extraneous details, the more understandable the pogram, package, or subprogram. It is
important to maintainers to know exactly what a package interface is so that they can understand the
effects of changes. Interfaces to a subprogram extend beyond the parameters. Any modification of
global data from within a package or subprogram is an undocumented interface to the "outside" as well.

Pushing as many as possible of the context dependencies into the body makes the reader's job easier,
localizes the recompilation required when library units change, and helps prevent a ripple effect during
modifications. See also Guideline 4.2.3.

Subprograms with large numbers of parameters often indicate poor design decisions (e.g., the functional
boundaries of the subprogram are inappropriate, or parameters are structured poorly). Conversely,
subprograms with no parameters are likely to be accessing global data.

Objects visible within package specifications can be modified by any unit that has visibility to them. The
object cannot be protected or represented abstractly by its enclosing package. Objects which must
persist should be declared in package bodies. Objects whose value depends on program units external to
their enclosing package are probably either in the wrong package or are better accessed by a subprogram
specified in the package specification.

note

The specifications of some packages, such as Ada bindings to existing subroutine libraries, cannot easily
be reduced in size. In such cases, it may be beneficial to break these up into smaller packages, grouping
according to category (e.g., trigonometric functions).

PROGRAM STRUCTURE 47

4.2.2 Nested Packages
guideline

Nest package specifications within another package specification only for grouping operations,
hiding common implementation details, or presenting different views of the same abstraction.

example

Chapter 14 of the Ada LRM (Ada Reference Manual 1983) gives an example of desirable package
specification nesting. The specifications of generic packages INTEGER_IO. FLOAT_IO, FIXEDIO, and
ENUMERATION_IO are nested within the specification of package TEXT_IO. Each of them is a generic,
grouping closely related operations and needing to use hidden details of the implementation of TEXT_10.

rationale

Grouping package specifications into an encompassing package emphasizes a relationship of
commonality among those packages. It also allows them to share common implementation details
resulting from the relationship.

An abstraction occasionally needs to present different views to different classes of users. Building one
view upon another as an additional abstraction does not always suffice, because the functionality of the
operations presented by the views may be only partially disjoint. Nesting specifications groups the
facilities of the various views, yet associates them with the abstraction they present. Abusive mixing of
the views by another unit would be easy to detect due to the multiple use clauses or an incongruous mix
of qualified names.

4.2.3 Restricting Visibility

guideline
* Restrict the visibility of program units as much as possible by nesting them inside other program units

and hiding them inside package bodies (Nissen and Wallis 1984).

• Minimize the scope within which with clauses apply.

* Only with those units directly needed.

example

This program is a compiler. Access to the printing facilities of TEXT_1O is restricted to the software
involved in producing the source code listing.

procedure COMPILER is
..

package LISTINGFACILITIES is

procedure NEWPAGEOFLISTING;
procedure NEWLINEOFPRINT;
-- etc.

end LISTING-FACILITIES;
..

package body LISTING_FACILITIES is separate;
..

begin -- COMPILER

end COMPILER;
...

48 Ada QUALITY AND STYLE

with TEXT 10;

separate (COMPILER)
package body LISTING_FACILITIES is

procedure NEW_PAGEOFLISTING is

begin

end NEW_PAGEOFLISTING:

procedure NEWLINEOF PRINT is
begin

end NEWLINEOFPRINT;

-- etc

end LISTINGFACILITIES;

rationale

Restricting visibility of a program unit ensures that the program unit is not called from some other part of
the system than that which was intended. This is done by nesting it inside of the only unit which uses it,
or by hiding it inside of a package body rather than declaring it in the package specification. This avoids
errors and eases the job of maintainers by guaranteeing that a local change in that unit will not have an
unforeseen global effect.

Restricting visibility of a library unit, by using with clauses on subunits rather than on the entire parent
unit, is useful in the same way. In the example above, it is clear that the package TEXT_IO is used only by
the LISTING_FACILITIES package of the compiler.

note

One way to minimize the coverage of a with clause is to use it only with subunits that really need it.
Consider making them subunits when the need for visibility to a library unit is restricted to a subprogram
or two.

4.2.4 Hiding Tasks

guideline

Carefully consider encapsulation of tasks.

PROGRAM STRUCTURE 49

example
..

package DISKHEAD SCHEDULER is
type TRACKNUMBER is ...
type WORDS is ...

procedure TRANSMIT (TRACK in TRACK_NUMBER;
DATA in WORDS);

end DISKHEADSCHEDULER;

package body DISKHEAD_SCHEDULER is

task CONTROL is
entry SIGNIN (TRACK : in TRACK_NUMBER);

end CONTROL;

task TRACKMANAGER is
entry TRANSFER (TRACKNUMBER) (DATA : in WORDS);

end TRACKMANAGER;

procedure TRANSMIT (TRACK in TRACKNUMBER;
DATA in WORDS) is

begin
CONTROL.SIGN_IN (TRACK);
TRACK MANAGER.TRANSFER (TRACK) (DATA)

end TRANSMIT;

end DISKHEAD_SCHEDULER;

rationale

The decision whether to declare a task in the specification or body of an enclosing package is not a
simple one. There are good arguments for both.

Hiding a task specification in a package body and exporting (via subprograms) only required entries
reduces the amount of extraneous information in the package specification. It allows your subprograms
to enforce any order of entry calls necessary to the proper operation of the tasks. It also allows you to
impose defensive task communication practices (see Guideline 6.2.2) and proper use of conditional and
timed entry calls. Finally, it allows the grouping of entries into sets for export to different classes of users
(e.g., producers versus consumers), or the concealment of entries that should not be made public at all
(e.g., initialization, completion, signals). Where performance is an issue and there are no ordering rules
to enforce, the entries can be renamed as subprograms to avoid the overhead of an extra procedure call.

An argument which can be viewed as an advantage or disadvantage is that hiding the task specification in
a package body hides the fact of a tasking implementation from the user. If the application is such that a
change to or from a tasking implementation, or a reorganization of services among tasks, need not
concern users of the package then this is an advantage. However, if the package user must know about
the tasking implementation to reason about globa! tasking behavior, then it is better not to hide the task
completely. Either move it to the package specification or add comments stating that there is a tasking
implementation, describing when a call may block, etc. Otherwise, it is the package implementor's
responsibility to ensure that users of the package do not have to concern themselves with behaviors such
as deadlock, starvation, and race conditions.

Finally, keep in mind that hiding tasks behind a procedural interface prevents the usage of conditional
and timed entry calls and entry families, unless you add parameters and extra code to the procedures to
make it possible for callers to direct the procedures to use these capabilities.

50 Ada QUALITY AND STYLE

4.3 EXCEPTIONS
This section addresses the issue of exceptions in the context of program structures. It discusses how
exceptions should be used as part of the interface to a unit, including what exceptions to declare and raise
and under what conditions to raise them. Information on how to handle, propagate, and avoid raising
exceptions is found in Section 5.8.

4.3.1 Using Exceptions as Help Define an Abstraction

guideline
" Declare a different exception name for each error that the user of a unit can make.

" Declare a different exception name for each unavoidable and unrecoverable internal error which
can occur in a unit.

" Do not borrow an exception name from another context.

* Export (declare visibly to the user) the names of all exceptions which can be raised.

" In a package, document which exceptions can be raised by each subprogram and task entry.

" Do not raise exceptions for internal errors which can be avoided or corrected within the unit.

• Do not raise the same exception to report different types of errors which are distinguishable by the
user of the unit.

" Provide interrogative functions which allow the user of a unit to avoid causing exceptions to be
raised.

* When possible, avoid changing state information in a unit before raising an exception.

• Catch and convert or handle all predefined and compiler-defined exceptions at the earliest
opportunity.

• Do not explicitly raise predefined or implementation-defined exceptions.

• Never let an exception propagate beyond its scope.

example

This package specification defines an exception which enhances the abstraction:

package STACK is

function STACKEMPTY return BOOLEAN;

NODATAONSTACK : exception;
-- Raised when POP is used on empty stack.

procedure POP {...
procedure PUSH (..

end STACK;

This example shows how to convert a predefined exception to a user-defined one:

procedure POP (...) is ... RETURNVALUE := STACKPOINTER.DATA;
STACKPOINTER :S STACKPOINTER.NEXT: return RETURN VALUE; exception when

CONSTRAINTERROR => raise NODATAONSTACK; end POP;

rationale

Exceptions should be used as part of an abstraction to indicate error conditions which the abstraction is
unable to prevent or correct. Since the abstraction is unable to correct such an error, it must report the
error to the user. In the case of a usage error (e.g., attempting to invoke operations in the wrong
sequence or attempting to exceed a boundary condition), the user may be able to correct the error. In
the case of an error beyond the control of the user, the user may be able to work around the error if
there are mutiple mechanisms available to perform the desired operation. In other cases, the user may
have to abandon use of the unit, dropping into a degraded mode of limited functionality. In any case,
the user must be notified.

PROGRAM STRUCTURE 51

Exceptions are a good mechanism for reporting such errors because they provide an alternate flow of
control for dealing with errors. This allows error-handling code to be kept separate from the code for
normal processing. When an exception is raised, the current operation is aborted and control is
transferred directly to the appropriate exception handler.

Several of the guidelines above exist to maximize the ability of the user to distinguish and correct
different types of errors. Providing a different exception name for each error condition makes it possible
to handle each error condition separately. Declaring new exception names, rather than raising
exceptions declared in other packages, reduces the coupling between packages and also makes different
exceptions more distinguishable. Exporting the names of all exceptions which a unit can raise, rather
than declaring them internally to the unit, makes it possible for users of the unit to refer to the names in
exception handlers. Otherwise, the user would be able to handle the exception only with an others
handler. Finally, using comments to document exactly which of the exceptions declared in a package
can be raised by each subprogram or task entry making it possible for the user to know which exception
handlers are appropriate in each situation.

Because they cause an immediate transfer of control, exceptions are useful for reporting unrecoverable
errors which prevent an operation from being completed, but not for reporting status or modes
incidental to the completion of an operation. They should not be used to report internal errors which a
unit was able to correct invisibly to the user.

To provide the user with maximum flexibility, it is a good idea to provide interrogative functions which
the user can call to determine whether an exception would be raised if a subprogram or task entry were
invoked. The function STACK IS EMPTY in the above example is such a function. It indicates whether
NODATA_ON_STACK would be raised if Pop were called. Providing such functions makes it possible for the
user to avoid triggering exceptions.

To support error recovery by its user, a unit should try to avoid changing state during an invocation
which raises an exception. If a requested operation cannot be completely and correctly performed, then
the unit should either detect this before changing any internal state information, or should revert back to
the state at the time of the request. For example, after raising the exception NO_DATA_ON_STACK, the stack
package in the above example should remain in exactly the same statt, it was in when Pop was called. If it
were to partially update its internal data structures for managing the stack, then future PusH and PoP
operations would not perform correctly. This is always desirable, but not always possible.

User-defined exceptions should be used instead of predefined or compiler-defined exceptions because
they are more descriptive and more specific to the abstraction. The predefined exceptions are very
general, and can be triggered by many different situations. Compiler-defined exceptions are
nonportable and have meanings which are subject to change even between successive releases of the
same compiler. This introduces too much uncertainty for the creation of useful handlers.

If you are writing an abstraction, remember that the user does not know about the units you use in your
implementation. That is an effect of information hiding. If any exception is raised within your
abstraction, you must catch it and handle it. The user is not able to provide a reasonable handler if the
original exception is allowed to propagate out. You can still convert the exception into a form intelligible
to the user if your abstraction cannot effectively recover on its own.

Converting an exception means raising a user-defined exception in the handler for the original
exception. This introduces a meaningful name for export to the user of the unit. Once the error situation
is couched in terms of the application, it can be handled in those terms.

Do not allow an exception to propagate unhandled outside the scope of the declaration of its name,
because then only a handler for others can catch it. As discussed under Guideline 5.8.2. a handler for
others cannot be written to deal with the specific error effectively.

4.4 SUMMARY

high-level structure

" Place the specification of each library unit package in a separate file from its body.

* Create an explicit specification. in a separate file, for each library unit subprogram.

* Use subunits for the bodies of large units which are nested in other units.

• Place each subunit in a separate file.

52 Ada QUALITY AND STYLE

" Use a consistent file naming convention.

" Use subprograms to enhance abstraction.

" Restrict each subprogram to the performance of a single action.

• When writing a function, make sure it has no side effects.

* Use packages for information hiding.

• Use packages with private types for abstract data types.

" Use packages to model abstract entities appropriate to the problem domain.

• Use packages to group together related type and object declarations (e.g., common declarations for
tw o or more library units).

• Use packages to group together related program units for configuration control or visibility reasons.

* Encapsulate machine dependencies in packages. Place a software interface to a particular device in
a package to facilitate a change to a different device.

• Place low-level implementation decisions or interfaces in subprograms within packages.

" Use packages and subprograms to encapsulate and hide program details that may change.

• Make each package serve a single purpose.

" Use packages to group functionally related data, types, and subprograms.

* Avoid collections of unrelated objects and subprograms.

" Avoid putting variables in package specifications.

" Use tasks to model abstract, asynchronous entities within the problem domain.

* Use tasks to control or synchronize access to tasks or other asynchronous entities (e.g.,
asynchronous 1/0, peripheral devices, interrupts).

* Use tasks to define concurrent algorithms for multiprocessor architectures.

* Use tasks to perform concurrent, cyclic, or prioritized activities.

visibility
" Put only what is needed for the use of a package into its specification.

• Minimize the declaration of objects in package specifications.

" Do not include extra operations simply because they are easy to build.

" Minimize the context (with) clauses in a package specification.

• Reconsider subprograms which seem to require large numbers of parameters.

• Do not manipulate global data within a subprogram or package merely to limit the number of
parameters.

• Avoid unnecessary visibility; hide the implementation details of a program unit from its users.

* Nest package specifications within another package specification only for grouping operations,
hiding common implementation details, or presenting different views of the same abstraction.

* Restrict the visibility of program units as much as possible by nesting them inside other program units
and hiding them inside package bodies.

• Minimize the scope within which with clauses apply.

" Only with those units directly needed.

• Carefully consider encapsulation of tasks.

exceptions

" Declare a different exception name for each error that the user of a unit can make.

" Declare a different exception name for each unavoidable and unrecoverable internal error which
can occur in a unit.

PROGRAM STRUCTURE 53

* Do not borrow an exception name from another context.

" Export (declare visibly to the user) the names of all exceptions which can be raised.

" In a package, document which exceptions can be raised by each subprogram and task entry.

* Do not raise exceptions for internal errors which can be avoided or corrected within the unit.

* Do not raise the same exception to report different types of errors which are distinguishable by the
user of the unit.

* Provide interrogative functions which allow the user of a unit to avoid causing exceptions to be
raised.

* When possible, avoid changing state information in a unit before raising an exception.

• Catch and convert or handle all predefined and compiler-defined exceptions at the earliest
opportunity.

* Do not explicitly raise predefined or implementation-defined exceptions.

Never let an exception propagate beyond its scope.

54 Ada QUALITY AND STYLE

CHAPTER 5
Programming Practices

Software is always subject to change. The need for this change, euphemistically known as "maintenance"
arises from a variety of sources. Errors need to be corrected as they are discovered. System functionality
may need to be enhanced in planned or unplanned ways. Inevitably, the requirements change over the
lifetime of the system, forcing continual system evolution. Often, these modifications are conducted long
after the software was originally written, usually by someone other than the original author.

Easy and successful modification requires that the software be readable, understandable, and structured
according to accepted practice. If a software component cannot be understood easily by a programmer who
is familiar with its intended function, that software component is not maintainable. Techniques that make
code readable and comprehensible enhance its maintainability. So far, we have visited such techniques as
consistent use of naming conventions, clear and well-organized commentary, and proper modularization.
We now present consistent and logical use of language features.

Correctness is one aspect of reliability. While style guidelines cannot enforce the use of correct algorithms,
they can suggest the use of techniques and language features known to reduce the number or likelihood of
failures. Such techniques include program construction methods that reduce the likelihood of errors or that
improve program predictability by defining behavior in the presence of errors.

5.1 OPTIONAL PARTS OF THE SYNTAX

Parts of the Ada syntax, while optional, can enhance the readability of the code. The guidelines given below
concern use of some of these optional features.

5.1.1 Loop Names
guideline

Associate names with loops when they are nested (Booch 1987, 195).

55

56 Ada QUALITY AND STYLE

example
DOCUMENTPAGES:

loop

PAGE LINES:
loop

exit PAGE_LINES when LINE NUMBER = MAX_LINESONPAGE;

LINE SYMBOLS:
loop

exit LINESYMBOLS when CURRENT_SYMBOL = SENTINEL;

end loop LINESYMBOLS;

end loop PAGE_LINES;

exit DOCUMENT PAGES when PAGE_NUMBER = MAXIMUM_PAGES;

end loop DOCUMENT_PAGES;

rationale
When you associate a name with a loop, you must include that name with the associated end for that
loop (Ada Reference Manual 1983). This helps readers find the associated end for any given loop. This
is especially true if loops are broken over screen or page boundaries. The choice of a good name for the
loop documents its purpose, reducing the need for explanatory comments. If a name for a loop is very
difficult to choose, this could indicate a need for more thought about the algorithm.

Regularly naming loops helps you follow Guideline 5.1.3.

It can be difficult to think up a name for every loop, therefore the guideline specifies nested loops. The
benefits in readability and second thought outweigh the inconvenience of naming the loops.

5.1.2 Block Names
guideline

Associate names with blocks when they are nested.

PROGRAMMING PRACTICES 57

example
TRIP:

declare
-- local object declarations

begin
ARRIVE AT AIRPORT:

declare
-- local object declarations

begin
-- Activities to RENTCAR,

-- Activities to CLAIM BAGGAGE,
-- Activities to RESERVEHOTEL.
-- Exception handlers, etc.

end ARRIVEATAIRPOPT;

VISIT CUSTOMER:
declare

-- local object declarations
begin

-- again a set of activities...
-- exception handlers, etc.

end VISITCUSTOMER;

DEPARTURE PREPARATION:
declare

-- local object declarations
begin

-- Activities to RETURNCAR,
-- Activities to CHECK_BAGGAGE,
-- Activities to WAITFOR FLIGHT.
-- Exception handlers, etc.

end DEPARTUREPREPARATION;

BOARD RETURNFLIGHT;
end TRIP;

rationale
When there is a nested block structure it can be difficult to determine which end corresponds to which
block. Naming blocks alleviates this confusion. The choice of a good name for the block documents its
purpose, reducing the need for explanatory comments. If a name for the block is very difficult to
choose, this could indicate a need for more thought about the algorithm.

This guideline is also useful if nested blocks are broken over a screen or page boundary.

It can be difficult to think up a name for each block, therefore the guideline specifies nested blocks. The
benefits in readability and second thought outweigh the inconvenience of naming the blocks.

5.1.3 Exit Statements
guideline

0 Use loop names on all exit statements.

example

See the example in Section 5.1.1.

rationale

An exit statement is an implicit goto. It should specify its source explicitly. When there is a nested loop
structure and an exit statement is used, it can be difficult to determine which loop is being exited. Also,
future changes which may introduce a nested loop are likely to introduce an error, with the exit
accidentally exiting from the wrong loop. Naming loops and their exits alleviates this confusion. This
guideline is also useful if nested loops are broken over a screen or page boundary.

5.1.4 Naming End Statements
guideline

• Include the simple name at the end of a package specification and body.

58 Ada QUALITY AND STYLE

• Include the simple name at the end of a task specification and body.

* Include the simple name at the end of an accept statement.

• Include the designator at the end of a subprogram body.

example
...

package AUTOPILOT is

function IS_ENGAGED ...

procedure DISENGAGE

end AUTOPILOT;

package body AUTOPILOT is

task type COURSE_MONITOR is

entry RESET ...

end COURSEMONITOR;

function IS-ENGAGED . is

end IS-ENGAGED;

procedure DISENGAGE . is

end DISENGAGE;

task body COURSE_MONITOR is

accept RESET ... do

end RESET;

end COURSEMONITOR;

end AUTOPILOT;

rationale

Repeating names on the end of these compound statements ensures consistency throughout the code. In
addition, the named end provides a reference for the reader if the unit spans a page or screen boundary.
or if it contains a nested unit.

5.2 PARAMETER LISTS
A subprogram or entry parameter list is the interface to the abstraction implemented by the subprogram or
entry. It is important that it is clear, and is expressed in a consistent style. Careful decisions about formal
parameter naming and ordering can make the purpose of the subprogram easier to understand which can
make it easier to use.

5.2.1 Formal Parameters

guideline

• Name formal parameters descriptively to reduce the need for comments.

example

LISTMANAGER. INSERT
(ELEMENT => EMPLOYEE RECORD,
INTO LIST => LIST OF MPLOYEES,
ATPOSITION => 1);

PROGRAMMING PRACTICES 59

rationale
Following the variable naming guidelines (Guidelines 3.2.1 and 3.2.3) for formal parameters can make
calls to subprograms read more like regular prose, as shown in the example above where no comments
are necessary. Descriptive names of this sort can also make the code in the body of the subprogram
more clear.

5.2.2 Named Association
guideline

* Use named parameter association in calls of infrequently used subprograms or entries with many
formal parameters.

* Use named association for constants, expressions, and literals in aggregates.
* Use named association when instantiating generics.
* Use named association for clarification when the actual parameter is any literal or expression.
* Use named association when supplying a nondefault value to an optional parameter.

instantiation
- Use named parameter association in calls of subprograms or entries called from less than five places

in a single source file or with more than two formal parameters.
example

ENCODETELEMETRYPACKET
(SOURCE => POWER_ELECTRONICS;
CONTENT => TEMPERATURE;
VALUE => READTEMPERATURESENSOR (POWER_ELECTRONICS);
TIME => CURRENT_TIME;
SEQUENCE => NEXT_PACKET_ID;
VEHICLE => THISSPACECRAFT;
PRiUARYMODULE => TRUE);

rationale
Calls of infrequently used subprograms or entries with many formal parameters can be difficult to
understand without referring to the subprogram or entry code. Named parameter association can make
these calls more readable.
When the formal parameters have been named appropriately, it is easier to determine exactly what
purpose the subprogram serves without looking at its code. This reduces the need for named constants
that exist solely to make calls more readable. It also allows variables used as actual parameters to be
given names indicating what they are without regard to why they are being passed in a call. An actual
parameter, which is an expression rather than a variable, cannot be named otherwise.
Named association allows subprograms to have new parameters inserted with minimal ramifications to
existing calls.

note
The judgment of when named parameter association improves readability is subjective. Certainly,
simple or familiar subprograms such as a swap routine or a sine function do not require the extra
clarification of named association in the procedure call.

caution

A consequence of named parameter association is that the formal parameter names may not be changed
without modifying the text of each call.

5.2.3 Default Parameters

guideline
" Provide default parameters to allow for occasional, special use of widely used subprograms or

entries.

" Place default parameters at the end of the formal parameter list.

60 Ada QUALITY AND STYLE

0 Consider providing default values to new parameters added to an existing subprogram.

example

Chapter 14 of the Ada Language Reference Manual (Department of Defense 1983) contains many
examples of this practice.

rationale

Often, the majority of uses of a subprogram or entry need the same value for a given parameter.
Providing that value, as the default for the parameter, makes the parameter optional on the majority of
calls. It also allows the remaining calls to customize the subprogram or entry by providing different
values for that parameter.

Placing default parameters at the end of the formal parameter list allows the caller to use positional
association on the call, otherwise defaults are available only when named association is used.

Often during maintenance activities, you increase the functionality of a subprogram or entry. This
requires more parameters than the original form for some calls. New parameters may be required to
control this new functionality. Give the new parameters default values which specify the old
functionality. Calls needing the old functionality need not be changed; they take the defaults. This is
true if the new parameters are added to the end of the parameter list, or if named association is used on
all calls. New calls needing the new functionality can specify that by providing other values for the new
parameters.

This enhances maintainability in that the places which use the modified routines do not themselves have
to be modified, while the previous functionality levels of the routines are allowed to be "reused."

exceptions

Do not go overboard. If the changes in functionality are truly radical, you should be preparing a separate
routine rather than modifying an existing one. One indicator of this situation would be that it is difficult
to determine value combinations for the defaults that uniquely and naturally require the more restrictive
of the two functions. In such cases, it is better to go ahead with creation of a separat- routine.

5.2.4 Mode Indication
guideline

* Show the mode indication of all procedure and entry parameters (Nissen and Wallis 1984).

" Select the most restrictive mode possible.

example

procedure OPENFILE (FILE_NAME in SPCSTRING;
OPENSTATUS out STATUS CODES);

entry ACQUIRE (KEY in CAPABILITY;

RESOURCE out TAPEDRIVE);

rationale

By showing the mode of parameters, you aid the reader. If you do not specify a parameter mode, the
default mode is in. Explicitly showing the mode indication of all parameters is a more assertive action
than simply taking the default mode. Anyone reviewing the code later will be more confident that you
intended the parameter mode to be in.

Use the mode that reflects the actual use of the parameter. Only use in out mode whzn reading and
writing to a parameter.

5.2.5 Order of Parameter Declarations

guideline

0 Declare parameters in a consistent order (Honeywell 1986).

instantiation

- All in parameters without default values are declared before any in out parameter.

PROGRAMMING PRACTICES 61

- All in out parameters are declared before any out parameters.

- All out parameters are declared before any parameters with default values.

- All parameters with default values are declared last.

- The order of parameters within these groups is derived from the needs of the application.

example
procedure ASSEMBLE_TELEMETRY_MESSAGE

(INPUTPACKET : in TELEMETRY_PACKET;
TRANSFERTODOWNLINKBUFFER in out PACKETBUFFER;
BUFFERFULL out BOOLEAN);

rationale
By declaring all the parameters in a consistent order, you make the code easier to read and understand.
Some of your choices are to arrange the parameters by mode or to group the parameters by function.
Also, grouping default parameters at the end of the list allows calls to be made using positional notation
and the default values.

In special cases, parameters declared in a nonstandard order may be more readable. Since consistency
is the goal, however, the readability or some other quality of the code must be enhanced if you deviate
from this guideline. Default parameters are an example of the need for a special case.

5.3 TYPES

In addition to determining the possible values for variables, type names, and distinctions can be very
valuable aids in developing safe, readable, and understandable code. Types clarify the structure of your data
and can limit or restrict the operations that can be performed on that data. "Keeping types distinct has been
found to be a very powerful means of detecting logical mistakes when a program is written and to give
valuable assistance whenever the program is being subsequently maintained" (Pyle 1985). Take advantage
of Ada's strong typing capability in the form of subtypes, derived types, task types, private types, and limited
private types.

The guidelines encourage much code to be written to ensure strong typing (i.e., subtypes). While it might
appear that there would be execution penalties for this amount of code, this is usually not the case. In
contrast to other conventional languages, Ada has a less direct relationship between the amount of code that
is written and the size of the resulting executable program. Most of the strong type checking is performed at
compilation time rather than execution time, so the size of the executable code is not greatly affected.

5.3.1 Derived Types and Subtypes

guideline
* Use existing types as building blocks by deriving new types from them.

• Use range constraints on subtypes.

* Define new types, especially derived types, to include the largest set of possible values, including
boundary values.

* Constrain the ranges of derived types with subtypes, excluding boundary values.

example

Type TABLE iS a building block for the creation of new types:

type TABLE is
record

COUNT LIST_SIZE EMPTY;

LIST ENTRYLIST EMPTYLIST;
end record;

type TELEPHONE_DIRECTORY is new TABLE;
type DEPARTMENT_INVENTORY is new TABLE;

The following are distinct types that cannot be intermixed in operations that are not programmed
explicitly to use them both:

62 Ada QUALITY AND STYLE

type DOLLARS is new NUMBER;
type CENTS is new NUMBER;

Below, SOURCETAIL has a value outside the range of LISTINGPAPER when the line is empty. All the
indices can be mixed in expressions, as long as the results fall within the correct subtypes:

type COLUMNS is range FIRST_COLUMN - 1 . LISTING_WIDTH + 1;
subtype LISTING_PAPER is COLUMNS

range FIRST_COLUMN . LISTINGWIDTH;
subtype DUMBTERMINAL is COLUMNS

range FIRST_COLUMN .. DUMB_TERMINAL_WIDTH;

type LISTING_LINE is array (LISTING_PAPER) of BYTES;
type TERMINAL_LINE is array (DUMB-TERMINAL) of BYTES;

SOURCE TAIL COLUMNS COLUMNS FIRST;
SOURCE LISTINGLINE;

DESTINATION TERMINALLINE;

DESTINATION (DESTINATION'FIRST .. (SOURCE_TAIL - DESTINATION'LAST))
SOURCE (COLUMNS'SUCC (DESTINATION-LAST) .. SOURCETAIL);

rationale

The name of a derived type can make clear its intended use and avoid proliferation of similar type
definitions. Objects of two derived types, even though derived from the same type, cannot be mixed in
operations unless such operations are supplied explicitly or one is converted to the other explicitly. This
prohibition is an enforcement of strong typing.

Define new types, derived types, and subtypes cautiously and deliberately. The concepts of subtype and
derived type are not equivalent, but they can be used to advantage in concert. A subtype limits the range
of possible values for a type, but does not define a new type.

Types can have highly constrained sets of values without eliminating useful values. Used in concert.
derived types and subtypes can eliminate many flag variables and type conversions within executable
statements. This renders the program more readable, enforces the abstraction, and allows the compiler
to enforce strong typing constraints.

Many algorithms begin or end with values just outside the normal range. If boundary values are not
compatible within subexpressions, algorithms can be needlessly complicated. The program can become
cluttered with flag variables and special cases when it could just test for zero or some other sentinel value
just outside normal range.

The derived type COLUMNS and the subtype LISTINGPAPER in the example above demonstrate how to
allow sentinel values. The subtype LISTINGPAPER could be used as the type for parameters of
subprograms declared in the specification of a package. This would restrict the range of values which
could be specified by the caller. Meanwhile, the derived type COLUMNS could be used to store such values
internally to the body of the package, allowing FIRSTCOLUMN - 1 to be used as a sentinel value. This
combination of derived types and subtypes allows compatibility between subtypes within subexpressions
without type conversions as would happen with derived types.

note

The price of the reduction in the number of independent type declarations is that subtypes and derived
types change when the base type is redefined. This tckle-down of changes is sometimes a blessing and
sometimes a curse. However, usually it is intended and beneficial.

5.3.2 Anonymous Types

guideline
0 Do not use anonymous types.

example
-- Use
type BUFFER is array (BUFFER_INDEX) of CHARACTER;

INPUT _LINE : BUFFER;
-- rather than

INPUT-LINE : array (BUFFERINDEX) of CHARACTER;

PROGRAMMING PRACTICES 63

rationale

Although Ada allows anonymous types, they have limited usefulness and complicate program
modification. For example, a variable of anonymous type can never be used as an actual parameter
because it is not possible to define a formal parameter of the same type. Even though this may not be a
limitation initially, it precludes a modification in which a piece of code is changed to a subprogram.
Also, two variables declared using the same anonymous type declaration are actually of different types.

note

For task types, see Guideline 6.1.2. For unconstrained arrays as formal parameters, see Guideline
8.2.2.

In reading the Ada Language Reference Manual (Department of Defense 1983), you will notice that
there are cases when anonymous types are mentioned abstractly as part of the description of the Ada
computational model. These cases do not violate this guideline.

5.3.3 Private Types

guideline
" Use limited private types in preference to private types.

* Use private types in preference to nonprivate types.

• Explicitly export needed operations rather than easing restrictions.

example

package PACKETTELEMETRY is

type FRAMEHEADER is limited private;
type FRAMEDATA is private;

type FRAMECODES is
(MAIN_BUS_VOLTAGE. TRANSMITTER_1_POWER,

private

type FRAMEHEADER is
record

end record;

type FRAMEDATA is

record

end record;

end PACKETTELEMETRY;

rationale

Limited private types and private types support abstraction and information hiding better than
nonprivate types. The more restricted the type, the better information hiding is served. This, in turn.
allows the implementation to change without affecting the rest of the program. While there are many
valid reasons to export types, it is better to try the preferred route first, loosening the restrictions only as
necessary. If it is necessary for a user of the package to use a few of the restricted operations, it is better
to export the operations explicitly and indivh-ually via exported subprograms than to drop a level of
restriction. This practice retains the restrictions on other operations.

Limited private types have the most restricted set of operations available to users of a package. Of the
types that must be made available to users of a package, as many as possible should be limited pr ate
The operations available to limited private types are membership tests, selected component,.
components for the selections of any discriminant, qualification and explicit conversion, and attribute,
'BASE and 'SIZE. Objects of a limited private type also have the attribute 'CONSTRAINED if there are
discriminants. None of these operations allow the user of the package to manipulate objects in a %a that
depends on the structure of the type.

64 Ada QUALITY AND STYLE

If additional operations must be available to the type, the restrictions may be loosened by making it a
private type. The operations available on objects of private types that are not available on objects of
limited private types are assignment and tests for equality and inequality. There are advantages to the
restrictive nature of limited private types. For example, assignment allows copies of an object to be
made. This could be a problem if the object's type is a pointer.

5.4 DATA STRUCTURES

The data structuring capabilities of Ada are a powerful resource; therefore, use them to model the data as
closely as possible. It is possible to group logically related data and let the language control the abstraction
and operations on the data rather than requiring the programmer or maintainer to do so. Data can also be
organized in a building block fashion. In addition to showing how a data structure is organized (and possibly
giving the reader an indication as to why it was organized that way), creating the data structure from smaller
components allows those components to be reused themselves. Using the features that Ada provides can
increase the maintainability of your code.

5.4.1 Heterogeneous Data
guideline

" Use records to group heterogeneous but related data.

" Consider records to map to I/O device data.

example

type PROPULSIONMETHOD is (SAIL, DIESEL. NUCLEAR);

type CRAFT is
record

NAME STRING (
PLANT PROPULSION_METHOD;

LENGTH FEET;

BEAM FEET;
DRAFT FEET;

end record;

type FLEET is array () of CRAFT;

rationale

You help the maintainer find all of the related data by gathering it into the same construct, simplifying
any modifications that apply to all rather than part. This in turn increases reliability. Neither you nor an
unknown maintainer are liable to forget to deal with all the pieces of information in the executable
statements, especially if updates are done with aggregate assignments whenever possible.

The idea is to put the information a maintainer needs to know where it can be found with the minimum
of effort. For example, if all information relating to a given CRAFT is in the same place, the relationship is
clear both in the declarations and especially in the code accessing and updating that information. But, if
it is scattered among several data structures, it is less obvious that this is an intended relationship as
opposed to a coincidental one. In the latter case, the declarations may be grouped together to imply
intent, but it may not be possible to group the accessing and updating code that way. Ensuring the use of
the same index to access the corresponding element in each of several parallel arrays is difficult if the
accesses are at all scattered.

If the application must interface directly to hardware, the use of records, especially in conjunction with
record representation clauses, could be useful to map onto the layout of the hardware in question.

note

It may seem desirable to store heterogeneous data in parallel arrays in what amounts to a
FORTRAN-like style. This style is an artifact of FORTRAN's data structuring limitations. FORTRAN
only has facilities for constructing homogeneous arrays. Ada's record types offer one way to specify what
are called nonhomogeneous arrays or heterogeneous arrays.

PROGRAMMING PRACTICES 65

exceptions

If the application must interface directly to hardware, and the hardware requires that information be
distributed among various locations, then it may not be possible to use records.

5.4.2 Nested Records
guideline

" Record structures should not always be flat. Factor out common parts.

" For a large record structure, group related components into smaller subrecords.

* For nested records, pick element names that read well when inner elements are referenced.

example

type COORDINATE is
record

ROW LOCAL-FLOAT;
COLUMN LOCALFLOAT:

end record:

type WINDOW is
record

TOP LEFT COORDINATE:
BOTTOMRIGHT COORDINATE.

end record;

rationale

You c in make complex data structures understandable and comprehensible by composing them of
famil ir building blocks. This technique works especially well for large record types with parts which fall
into i,'tural groupings. The components factored into separately declared records, based on a common
quali, or purpose, correspond to a lower level of abstraction than that represented by the larger record.

note

A ca, -fully chosen name for the component of the larger record that is used to select the smaller
enha.ces readability, for example:
if WI DOW1.BOTTOM_RIGHT.ROW > WINDOW2.TOP_LEFT.ROW then .

5.4.3 Dynamic Data
guidelint

" E fferentiate between static and dynamic data. Use dynamically allocated objects with caution.

* 1',e dynamically allocated data structures only when it is necessary to create and destroy them
o namically or to be able to reference them by different names.

• D.) not drop pointers to unaceallocated ocjects.

" Dc not leave dangling references to deallocated objects.

" Initialize all access variables and components.

* Do not rely on memory deallocation.

* Deallocate explicitly.

* Use length clauses to specify total allocation size.

* Provide handlers for STORAGE_ERROR.

example

These lines show how a dangling reference might be created:

P1 new OBJECT;
P2 P1;
UNCHECKEDOBJECTDEALLOCATION (P2),

This line can raise an exception due to referencing the deallocated object:

66 Ada QUALITY AND STYLE

X := PI.DATA;

In the following three lines, if there is no intervening assignment of the value of Pi to any other pointer,
the object created on the first line is no longer accessible after the third line. The only pointer to the
allocated object has been dropped.

P1 new OBJECT;

P1 P2;

rationale

See also Guidelines 5.9.1, 5.9.2, and 6.1.3 for variations on these problems. A dynamically allocated
object is an object created by the execution of an allocator ("new"). Allocated objects referenced by
access variables allow you to generate aliases, which are multiple references to the same object.
Anomalous behavior can arise when you reference a deallocated object by another name. This is called
a dangling reference. Totally disassociating a still-valid object from all names is called dropping a
pointer. A dynamically allocated object that is not associated with a name cannot be referenced or
explicitly deallocated.

A dropped pointer depends on an implicit memory manager for reclamation of space. It also raises
questions for the reader as to whether the loss of access to the object was intended or accidental.
An Ada environment is not required to provide deallocation of dynamically allocated objects. If
provided, it may be provided implicitly (objects are deallocated when their access type goes out of
scope), explicitly (objects are deallocated when UNCHECKED_DEALLOCATION is called), or both. To increase
the likelihood of the storage space being reclaimed, it is best to call UNCHECKED -DEALLOCATION explicitly
for each dynamically object when you are finished using it. Calls to UNCHECKEDDEALLOCATION also
document a deliberate decision to abandon an object, making the code easier to read and understand.
To be absolutely certain that space is reclaimed and reused, manage your own "free list." Keep track of
which objects you are finished with, and reuse them instead of dynamically allocating new objects later.

The dangers of dangling references are that you may attempt to use them, thereby accessing memory
which you have released to the memory manager, and which may have been subsequently allocated for
another purpose in another part of your program. When you read from such memory, unexpected
errors may occur because the other part of your program may have previously written totally unrelated
data there. Even worse, when you write to such memory you can cause errors in an apparently unrelated
part of the code by changing values of variables dynamically allocated by that code. This type of error
can be very difficult to find. Finally, such errors may be triggered in parts of your environment that you
didn't write, for example, in the memory management system itself which may dynamically allocate
memory to keep records about your dynamically allocated memory.

Keep in mind that any uninitialized or unreset component of a record or array can also be a dangling
reference or carry a bit pattern representing inconsistent data.

Whenever you use dynamic allocation it is possible to run out of space. Ada provides a facility (a length
clause) for requesting the size of the pool of allocation space at compile time. Anticipate that you can
still run out at run time. Prepare handlers for the exception STORAGE _RROR, and consider carefully what
alternatives you may be able to include in the program for each such situation.
There is a school of thought that dictates avoidance of all dynamic allocation. It is largely based on the
fear of running out of memory during execution. Facilities such as length clauses and exception handlers
for STORAGE_ERROR provide explicit control over memory partitioning and error recovery, making this
fear unfounded.

5.5 EXPRESSIONS
Properly coded expressions can enhance the readability and understandability of a program. Poorly coded
expressions can turn a program into a maintainer's nightmare.

5.5.1 Range Values

guideline

0 Use FIRST or LAST instead of numeric literals to represent the first or last values of a range

PROGRAMMING PRACTICES 67

Use the type or subtype name of the range instead of 'FIRST 'LAST.

example

subtype TEMPERATURE is integer range ALL_TIME LOW ALL_TIMEHIGH:
CURRENTTEMPERATURE : TEMPERATURE;
type WEATHERSTATIONS is 1 .. MAX_STATIONS;

for I in WEATHER_STATIONS loop
OFFSET := CURRENTTEMPERATURE - TEMPERATURE'FIRST;

end loop;

rationale

In the example above, it is better to use WEATHERSTATIONS in the for loop than to use
WEATHERSTATIONS'FIRST WEATHER_STATIONS'LAST or 1 . MAX_STATIONS, because it is clearer, less
error-prone, and less dependent on the definition of the type WEATHER_STATIONS. Similarly, it is better to
use TEMPERATURE'FIRST in the offset calculation than to use ALL_TIMELOW, because the code will still be
correct if the definition of the subtype TEMPERATURE is changed. This enhances program reliability.

caution
When you implicitly specify ranges and attributes like this, be careful that you use the correct type or
subtype name. It is easy to refer to a very large range without realizing it. For example, given the
declarations:

type LARGERANGE is new INTEGER;
subtype SMALL_RANGE is LARGE_RANGE range 1._10;

the first declaration below works fine, but the second one is probably an accident and raises an
exception on most machines because it is requesting a huge array (indexed from the smallest integer to
the largest one):

ARRAY_1 I array (SMALL_RANGE) of integer;

ARRAY_2 array (LARGERANGE) of integer;

5.5.2 Array Attributes

guideline

U Lse array attributes 'FIRST, 'LAST, or 'LENGTH instead of numeric literals for accessing arrays.

* Use the 'RANGE of the array instead of the name of the index type to express a range.

* Use 'RANGE instead of 'FIRST '. LAST to express a range.

example

subtype NAMESTRING_SIZE is POSITIVE range I .. 30;
NAMESTRING : STRING (NAMESTRINGSIZE);

for I in NAME STRING'RANGE loop

end loop;

rationale

In the example above. it is better to use NAME_STRING"RANGE in the for loop than to use NAME_STRING_SIZE,
NAMESTRING'FIRST .. NAME_STRING'LAST, or i 30, because it is clearer, less error-prone, and less
dependent on the definitions of NAMESTRING and NAMESTRING SIZE. If NAMESTRING is changed to have a
different index type, or if the bounds of the array are changed, this will still work correctly. This
enhances program reliability.

5.5.3 Parenthetical Expressions
guideline

U Use parentheses to specify the order of subexpression evaluation where operators from different
precedence levels are involved, and to clarify expressions (General Dynamics 1986 and NASA
1987).

68 Ada QUALITY AND STYLE

example
(1.5 * (X'*2)) + (8.5 * X) + 47

rationale

Parenthetical expressions improve code readability. If you forget which operator has higher precedence,
it may be helpful to use parentheses to specify the order of subexpression evaluation.

5.5.4 Positive Forms of Logic

guideline
* Avoid names and constructs that rely on the use of negatives.

" Choose names of flags so they represent states that can be used in positive form.

example
-- Use
if OPERATOR MISSING
-- rather than either
if not OPERATORFOUND
-- or

if not OPERATORMISSING

rationale

Relational expressions can be more readable and understandable when stated in a positive form. As an
aid in choosing the name, consider that the most frequently .used branch in a conditional construct
should be encountered first.

exception
There are cases in which the negative form is unavoidable. If the relational expression better reflects
what is going on in the code, then inverting the test to adhere to this guideline is not recommended.

5.5.5 Short Circuit Forms of the Logical Operators

guideline

* Use short-circuit forms of the logical operators.

example
-- Use
if not (Y = 0) or else ((X / Y) 1= 10) ...
-- or
if (Y /= 0) then

if ((x / Y) / 10) then .
-- rather than either
if (Y = 0) and ((X / Y) = 10) ...

-- or
if ((X / Y) = 10) ...
-- to avoid NUMERICERROR.

-- Use
if TARGET /= null and then TARGET.DISTANCE < THRESHOLD then ...
-- rather than
if TARGET.DISTANCE < THRESHOLD then ...
-- to avoid referencing a field in a non-existent object.

rationale

rhe use of short-circuit control forms prevents a class of data-dependent errors or exceptions that can
occur as a result of expression evaluation. The short-circuit forms guarantee an order of evaluation and
an exit from the sequence of relational expressions as soon as the expression's result can be determined

In the absence of short-circuit forms, Ada does not provide a guarantee of the order of expression
evaluation, nor does the language guarantee that evaluation of a relational expression is abandoned
when it becomes clear that it evaluates to FALSE (for and) or TRUE (for or).

PROGRAMMING PRACTICES 69

note
If it is important that all parts of a given expression always be evaluated, the expression probably violates
Guideline 4.1.3 which prohibits side-effects in functions.

5.5.6 Type Qualified Expressions and Type Conversions
guideline

Use type qualified expressions instead of type conversions wherever possible.

example
type REAL is ...

type WHOLE is ..

ACTUAL SPEED REAL;
DESIREDSPEED WHOLE; -- Console dial setting
TAILWIND WHOLE; -- Cheap sensor

ACTUAL SPEED REAL (DESIRED SPEED + TAILWIND);
-- A type conversion. An addition operation inherited by subtype WHOLE is
-- used, followed by conversion of the result to REAL.

ACTUALSPEED := REAL'(DESIRED SPEED + TAILWIND);
-- A type qualified expression. A specific operator overloading + and
-- giving result type REAL is used.

rationale

Type qualified expressions are evaluated at compile time, but type conversions are made at execution
time. Type qualifiers help in operator overload resolution by explicitly specifying the qualified
expressions' desired result type.

Z.5.7 Accuracy of Operations With Real Operands

guideline
0 Use <= and >= in relational expressions with real operands instead of

example
CURRENTTEMPERATURE TEMPERATURE 0.0;

TEMPERATUREINCREMENT TEMPERATURE 1.0 / 3.0;
MAXIMUMTEMPERATURE constant 100.0;

loop

CURRENTTEMPERATURE := CURRENT-TEMPERATURE + TEMPERATURE-INCREMENT;

exit when CURRENTTEMPERATURE >= MAXIMUMTEMPERATURE;

end loop;

rationale

Fixed and floating point values, even if derived from similar expressions, may not be exactly equal. The
imprecise, finite representations of real numbers in hardware always have round-off errors so that any
variation in the construction path or history of two reals has the potential for resulting in different
numbers, even when the paths or histories are mathematically equivalent.

The Ada definition of model intervals also means that the use of <= is more transportable than either < or

note

Floating point arithmetic is treated in Chapter 7.

70 Ada QUALITY AND STYLE

exceptions

If your application must test for an exact value of a real number (e.g., testing the precision of the
arithmetic on a certain machine), then the = would have to be used. But never use = on real operands as
a condition to exit a loop.

5.6 STATEMENTS

Careless or convoluted use of statements can make a program hard to read and maintain even if its global
structure is well organized. You should strive for simple and consistent use of statements to achieve clarity of
local program structure. Some of the guidelines in this section counsel use or avoidance of particular
statements. As pointed out in the individual guidelines, rigid adherence to those guidelines would be
excessive, but experience has shown that they generally lead to code with improved reliability and
maintainability.

5.6.1 Nesting

guideline
" Minimize the depth of nested expressions (Nissen and Wallis 1984).

" Minimize the depth of nested control structures (Nissen and Wallis 1984).

• Try simplification heuristics.

instantiation
- Do not nest expressions or control structures beyond a nesting level of five.

example

The following section of code:
if not CONDITION_1 then

if CONDITION_2 then
ACTION A;

else
ACTION B;

end if;
else

ACTION_C;
end if;

can be rewritten more clearly and with less nesting as:

if CONDITION 1 then
ACTION C;

elsif CONDITION_2 then
ACTION_A;

else
ACTION_B;

end if;

rationale

Deeply nested structures are confusing, difficult to understand, and difficult to maintain. The problem
lies in the difficulty of determining what part of a program is contained at any given level. For
expressions, this is important in achieving the correct placement of balanced grouping symbols and in
achieving the desired operator precedence. For control structures, the question involves what part is
controlled. Specifically, is a given statement at the proper level of nesting, i.e., is it too deeply or too
shallowly nested, or is the given statement associated with the proper choice, e.g., for if or case
statements? Indentation helps, but it is not a panacea. Visually inspecting alignment of indented code
(mainly intermediate levels) is an uncertain job at best. To minimize the complexity of the code, keep
the maximum number of nesting levels between three and five.

PROGRAMMING PRACTICES 71

note
Ask yourself the following questions to help you consider alternatives to the code and help you reduce
the nesting:

- Can some part of the expression be put into a constant or variable?

- Does some part of the lower nested control structures represent a significant, and perhaps reusable
computation that I can factor into a subprogram?

- Can I convert these nested if statements into a case statement?

- Am I using else if where I could be using elsif?

- Can I reorder the conditional expressions controlling this nested structure?

- Is there a different design that would be simpler?

exceptions

If deep nesting is required frequently, there may be overall design decisions for the code that should be
changed. Some algorithms require deeply nested loops and segments controlled by conditional
branches. Their continued use can be ascribed to their efficiency, familiarity, and time proven utility.
When nesting is required, proceed cautiously and take special care with the choice of identifiers and
loop and block names.

5.6.2 Slices
guideline

0 Use slices rather than a loop to copy part of an array.

example
type SQUARE_MATRIX is array (ROWS, ROWS) of ELEMENT;
type DIAGONALS is array (1 .. 3) of ELEMENT;
type ROWVECTOR is array (ROWS) of ELEMENT;
type TRIDIAGONAL is array (ROWS) of DIAGONALS;
MARKOVPROBABILITIES SQUAREMATRIX;
DIAGONALDATA TRIDIAGONAL;

-- Remove diagonal and off-diagonal elements.
DIAGONALDATA (ROWS'FIRST) (1) NULLVALUE;
DIAGONALDATA (ROWS'FIRST) (2 .. 3)

MARKOV PRORABILITIES (ROWS-FIRST) (ROWS'FIRST .. ROWS-SUCC (ROWS'FIRST));

for I in ROWS'SUCC (ROWS'FIRST) .. ROWS'PRED (ROWS'LAST) loop
DIAGONALDATA (I) := MARKOV PROBABILITIES (I) (I - I I + 1):

end loop;

DIAGONAL DATA (ROWS'LAST) (1 .. 2)

MARKOV PROBABILITIES (ROWS'LAST) (ROWS-PRED (ROWS'LAST) .. ROWS-LAST)
DIAGONALDATA (ROWS-LAST) (3) NULLVALUE;

rationale

An assignment statement with slices is simpler and clearer than a loop, and helps the reader see the
intended action. Slice assignment can be faster than a loop if a block move instruction is available.

5.6.3 Case Statements
guideline

• Never use an others choice in a case statement,

" Do not use ranges of enumeration literals in case statements.

• If you use an if statement instead of a case statement, use marker comments indicating the cases.

72 Ada QUALITY AND STYLE

example
type COLOR is (RED, GREEN, BLUE, PURPLE)

case ...
when RED .. BLUE =>
when PURPLE => ...

end case;

Now consider a change in the type:

type COLOR is (REU, YELLOW, GREEN. BLUE, PURPLE);

This change may have an unnoticed and undesired effect in the case statement. If the choices had been
enumerated explicitly, as when RED, GREEN, BLUE => instead of when RED .. BLUE =>, then the case
statement would have not have compiled. This would have forced the maintainer to make a conscious
decision about what to do in the case of YELLOW.

rationale

All possible values for an object should be known and should be assigned specific actions. Use of an
othes clause may prevent the developer from carefully considering the actions for each value. A
compiler warns the user about omitted values, if an others clause is not used.

Each possible value should be explicitly enumerated. Ranges can be dangerous because of the possibility
that the range could change and the case statement may not be reexamined.

A case statement can be more efficient than a nested if-then-else structure. Where the case statement is
less efficient, marking the if statement documents the intended purpose and allows the if to be converted
back to a case should the code move to a different implementation or machine.

exception

It is acceptable to use ranges for possible values only when the user is certain that new values will never
be inserted among the old ones, as for example, in the range of ASCII characters: a z.

5.6.4 Loops
guideline

* Use for loops whenever possible (when the number of iterations is computable).

• Use while loops when the number of iterations is not computable, but a simple continuation
condition can be applied at the top of the loop.

* Use plain loops with exit statements for more complex situations.

• Avoid exit statements in while and for loops.

* Minimize the number of ways to exit a loop.

example

To iterate over all elements of an array:

for I in ARRAY_NAE'RANGE loop

end loop;

To iterate over all elements in a linked list:

POINTER := HEADOFLIST;
while (POINTER /z null) loop

POINTER := POINTER.NEXT;

end loop;

Situations requiring a "loop and a half" arise often. For this use:

P_AND_Q_PROCESSING:
loop

P;

exit PAND_Q_PROCESSING when CONDITIONDEPENDENTONP.

Q,
end loop,;

PROGRAMMING PRACTICES "3

rather than:
P:

while not CONDITION_DEPENDENTONP loop
Q,
P;

end loop;

rationale

A for loop is bounded, so it cannot be an "infinite loop." This is enforced by the Ada language which
requires a finite range in the loop specification and which does not allow the loop counter of a for loop to
be modified by a statement executed within the loop. This yields a certainty of understanding for the
reader and the writer not associated with ther forms of loops. A for loop is also easier to maintain
bc&:ause the iteration range can be expressed using attributes of the data structures upon which the loop
operates. as shown in the example above where the range changes automatically whenever the
declaration of the array is modified. For these reasons, it is best to use the for loop whenever possible;
that is, whenever simple expressions can be used to describe the first and last values of the loop counter.

The while loop has become a very familiar construct to most programmers. At a glance it indicates the
condition under which the loop continues. Use the while loop whenever it is not possible to use the for
loop, but there is a simple boolean expression describing the conditions under which the loop should
continue, as shown in the example above.

The normal loop statement should be used in more complex situations, even if it is possible to contrive a
solution using a for or while loop in conjunction with extra flag variables or exit statements. The criteria
in selecting a loop construct is to be as clear and maintainable as possible. It is a bad idea to use an exit
statement from within a for or while loop because it is misleading to the reader after having apparently
described the complete set of loop conditions at the top of the loop. A reader who encounters a normal
loop statement expects to see exit statements.

There are some familiar looping situations which are best achieved with the normal loop statement. For
exaImple, the semantics of the Pascal repeat until loop, where the loop is always executed at least once
before the termination test occurs, are best achieved by a normal loop with a single exit at the end of the
loop. Another common situation is the "loop and a half" construct, shown in the example above, tkhere
a loop must terminate somewhere within the sequence of statements of the body. Complicated "loop
and a half" constructs sirnula'ed with while loops often require the introduction of flag variables, or
duplication of code before and during the loop, as shown in the example. Such contortions make the
code more complex and less reliable.

Minimize the number of ways to exit a loop in order to make the loop more understandable to the
,eader. It should be rare that you need more than two exit paths from a loop. When you do, be sure to
use exit statements for all of them, rather than adding an exit statement to a for or while loop.

5.6.5 Exit Statements
guideline

* Use exit statements to enhance the readability of loop termination code (NASA 1987).

SLSe exit when ... rather than if ... then exit whenever possible (NASA 1987).

* Review exit statement placement.

example

qee the examples in Guidelines 5.1.1 and 5.6.4.

rationale

It is more readable to use exit statements thar to try to add boolean flags to a while loop condition to
simulate exits from the middle of a loop. Even if all exit statements would be clustered at the top of the
loop body, thE separation of a complex condition into mul'iple exit statements can simplify and make :t
more read.:ble and clear. The sequential execution of two exit statement' is often more clear than :he
short-circuit control forms.

The exit A en form is preferable to the if . then. exit form because it makes the word exi- mre
isihle by not nesting it inside of any control construct. The if then exit form is needed onlk n i.e

74 Ada QUALITY AND STYLE

case where other statements, in addition to the exit statement, must be executed conditionally. For
example:

if STATUS = DONE then
SHUTDOWN;

exit;
end if;

Loops with many scattered exit statements can indicate fuzzy thinking as regards the loop's purpose in
the algorithm. Such an algorithm might be coded better some other way, e.g., with a series of loops.
Some rework can often reduce the number of exit statements and make the code clearer.

See also Guidelines 5.1.3 and 5.6.4.

5.6.6 Recursion and Interaction Bounds
guideline

* Understand and consider specifying bounds on loops.

* Understand and consider specifying bounds on recursion.

example

Establishing an iteration bound:

SAFETY-COUNTER := 0;
PROCESS_LIST:

loop
exit when CURRENTITEM = null,

CURRENTITEM := CURRENTITEM.NEXT;

SAFETY COUNTER := SAFETYCOUNTER + 1;
if SAFETY_COUNTER > 1_000_000 then

raise SAFETYERROR;
end if;

end loop PROCESSLIST;

Establishing a recursion bound:

procedure DEPTH_FIRST (ROOT : in SUBTREE;

SAFETYCOUNTER : in RECURSIONBOUND := 1_000) is
begin

if SAFETYCOUNTER = 0 then

raise RECURSIONERROR;
end if;
... -- normal subprogram body
DEPTH_FIRST (SUB_ROOT. (SAFETY_COUNTER - 1)); -- recursive call

end DEPTH_FIRST;

Following are examples of this subprogram's usage. One call specifies a maximum recursion depth of 50.
The second takes the default (one thousand). The third uses a computed bound:

DEPTHFIRST (TREE 50),
DEPTHFIRST (TREE.);
DEPTHFIRST (TREE. CURRENTTREE_HEIGHT):

rationale

Recursion, and iteration using structures other than for statements, can be infinite because the expected
terminating condition does not arise. Such faults are sometimes quite subtle, may occur rarely, and may
be difficult to detect because an external manifestation might be absent or substantially delayed.

By including counters and checks on the counter values, in addition to the loops themselves, you can
prevent many forms of infinite loops. The inclusion of such checks is one aspect of the technique called
Safe Programming (Anderson and Witty 1978).

PROGRAMMING PRACTICES 75

The bounds of these checks do not have to be exact, just realistic. Such counters and checks are not part
of the primary control structure of the program but a benign additin functioning as an execution-time
"safety net" allowing error detection and possibly recovery from potential infinite loops or infinite
recursion.

note

If a loop uses the for iteration scheme (Guideline 5.6.4), it follows this guideline.

exceptions

Embedded control applications have loops that are intended to be infinite. Only a few loops within such
applications should qualify as exceptions to this guideline. The exceptions should be deliberate (and
documented) policy decisions.

This guideline is most important to safety critical systems. For other systems, it may be overkill.

5.6.7 Goto Statements
guideline

* Do not use goto statements unless you are sure there is no alternative.

* If you must use a goto statement, highlight both it and the label.

rationale

A goto statement is an unstructured change in the control flow. Worse, the label does not require an
indicator of where the corresponding goto statement(s) are. This makes code unreadable and makes its
correct execution suspect.

note

For the rare occasions in which you can present a case for using a goto statement, highlight both it and
the label with blank space and highlighting comments, and indicate at the label where the corresponding
goto statement(s) may be found.

5.6.8 Return Statements
guideline

* Minimize the number of returns from a subprogram (NASA 1987).

" Highlight returns with comments or white space to keep them from being lost in other code.

example

The following code fragment is longer and more complex than necessary:

if (POINTER /= null) then
if (POINTER.COUNT > 0) then

return TRUE;
else

return FALSE;
end if;

else

return FALSE;
end if;

It should be replaced with the shorter, more concise, and clearer equivalent line:

return (POINTER /= null and then POINTER.COUNT > 0);

rationale

Excessive use of returns can make code confusing and unreadable. Only use return statements where
warranted. Too roiany returns from a subprogram may be an indicator of cluttered logic. If the
application requires multiple returns, use them at the same level (i.e., as in different branches of a case
statement), rather than sca:tered throughout the subprogram code. Some rework can often reduce the
number of return statements to one and make the code more clear.

76 Ada QUALITY AND STYLE

exception

Do not avoid return statements if it detracts from natural structure and code readability.

5.6.9 Blocks
guideline

0 Use blocks liberally and for their intended purposes.

example

INTEGRATEVELOCITY_FROM_ACCELERATION:
begin

exception
when NUMERICERROR I CONSTRAINTERROR =>

-- use old velocity value
end INTEGRATE_VELOCITYFROM_ACCELERATION;

rationale.

Blocks break up large segments of code and isolate details relevant to each subsection of code. The
intended purposes of blocks are to introduce local declarations, define local exception handlers, and
perform local renaming.

Declaring objects locally limits the visibility to the scope of the block. This enforces information hiding.
It also allows for memory deallocation when the block is done executing. Local exception handlers can
catch exceptions close to the point of origin and allow them to either be handled, propogated, or
converted. Local renaming enhances readability for a given section of code.

5.6.10 Aggregates
guideline

" Use an aggregate instead of a sequence of assignments to assign values to all fields of a record

* Use an aggregate instead of a temporary variable when building a record to pass as an actual
parameter.

" Use named component association in aggregates.

example

It is better to use aggregates:

SETPOSITION (X => 100, Y => 200)):

EMPLOYEERE-0)R :=
(NUMBER =) 42;
AGE => 51;

DEPARTMENT => SOFTWARE_ENGINEERING);

than to use consecutive assignments or temporary variables:

TEMPORARYPOSITION : POSITION;

TEMPORARYPOSITION.X 100;
TEMPORARY_POSITION.Y := 200;
SETPOSITION (TEMPORARYPOSITION):

EMPLOYEE_RECORD.NUMBER 42,
EMPLOYEERECORD.AGE : 51;
EMPLOYEE_RECORD.DEPARTMENT = SOFTWAREENGINEERING;

rationale

Use of aggregates is beneficial during maintenance. If a r-cord structure is altered, but the
corresponding aggregate is not, the compiler flags the missing field in the aggregate assignment. It would
not be able to detect the fact that a new assignment statement should have been added to a list of
assignment statements.

PROGRAMMING PRACTICES 77

Aggregates can also be a real convenience in combining data items into a record or array structure
required for passing the information as a parameter. Named component association makes aggregates
more readable.

5.7 VISIBILITY

As noted in Section 4.2, Ada's ability to enforce information hiding and separation of concerns through its
visibility controlling features is one of the most important advantages of the language. Subverting these
features, for example by over liberal use of the use clause, is wasteful and dangerous.

5.7.1 The Use Clause
guideline

" Minimize using the use clause (Nissen and Wallis 1984).

• Localize the effect of the use clauses you must employ.

example
This is a modification of the example from Guideline 4.2.3. The effect of a use clause is localized.

procedure COMPILER is

package LISTING_FACILITIES is

procedure NEWPAGEOFLISTING;
procedure NEWLINEOFPRINT;
-- etc.

end LISTINGFACILITIES;

package body LISTING_FACILITIES is separate;

begin --COMPILER

end COMPILER:

with TEXT_10;
separate (COMPILER)

package body LISTINGFACILITIES is

procedure NEW_PAGEOFLISTING is

begin

end NEWPAGEOFLISTING;

procedure NEW_LINEOFPRINT is
use TEXTIO; -- Note use clause.

begin

end NEWLINEOFPRINT

-- etc

end LISTINGFACILITIES;

rationale

Avoiding the use clause forces you to use fully qualified names. In large systems, there may be man%
library units named in with clauses. When corresponding use clauses accompany the with clauses, and
the simple names of the library packages are omitted (as is allowed by the use clause), references to
external entities are obscured, and identification of external dependencies becomes difficult.

You can minimize the scope of the use clause by placing it in the body of a package or subprogram, or
encapsulating it in a block to restrict visibility. Placing a use clause in a block has a similar effect to the
Pascal with statement of localizing the use of unqualified names.

78 Ada QUALITY AND STYLE

notes

Avoiding the use clause completely can cause problems when compiling with (in the context of)
packages that contain type declarations. Simply importing these types via a with clause does not allow
relational operators implicitly defined for them to be used in infix notation. A use clause enables the use
of infix notation. A better choice is to use renaming declarations to overcome the visibility problem and
enable the use of infix notation.

Avoiding the use clause completely also causes problems with enumeration literals, which must then be
fully qualified. This problem can be solved by declaring constants with the enumeration literals as their
values, except that such constants cannot be overloaded like enumeration literals.

An argument defending the use clause can be found in (Rosen 1987).

automation note
There are tools which can analyze your Ada source code, resolving overloading of names, and
automatically converting to the use or avoidance of use clauses.

5.7.2 The Renames Clause

guideline
" Use the renames clause judiciously and purposefully.

" Rename a long fully qualified name to reduce the complexity if it becomes unwieldy (Guideline
3.1.4).

• Rename declarations for visibility purposes rather than using the use clause especially infix operators
(Guideline 5.7.1).

* Rename parts when interfacing to reusable components originally written with nondescriptive or
inapplicable nomenclature.

* Use a project-wide standard list of abbreviations to rename common packages.

example
procedure DISKWRITE (TRACKNAME : in TRACK; ITEM : in DATA) renames

SYSTEMSPECIFIC.DEVICE_DRIVERS.DISK_HEAD_SCHEDULER.TRANSMIT;

rationale

If the renaming facility is abused, the code can be difficult to read. A renames clause can substitute an
abbreviation for a qualifier or long package name locally. This can make code more readable yet anchor
the code to the full name. However, the use of renames clauses can often be avoided or made obviously
undesirable by choosing names carefully so that fully qualified names read well. The list of renaming
declarations serves as a list of abbreviation definitions (see Guideline 3.1.4). By renaming imported
infix operators, the use clause can often be avoided. The method prescribed in the Ada Language
Reference Manual (Department of Defense 1983) for renaming a type is to use a subtype (see Guideline
3.4.1). Often the parts recalled from a reuse library do not have names that are as general as they could
be or that match the new application's naming scheme. An interface package exporting the renamed
subprograms can map to your project's nomenclature.

5.7.3 Overloaded Subprograms

guideline

Limit overloading to widely used subprograms that perform similar actions on arguments of different
types (Nissen and Wallis 1984).

example
function SIN (ANGLES MATRIXOFRADIANS) return MATRIX;
function SIN (ANGLES VECTOROFRADIANS) return VECTOR;
function SIN (ANGLE RADIANS) return SMALLREAL;
function SIN (ANGLE DEGREES) return SMALLREAL;

PROGRAMMING PRACTICES -9

rationale

Excessive overloading can be confusing to maintainers (Nissen and Wallis 1984, 65). Only use it when
there is an overwhelming reason to do so. ". iere is also the danger of hiding declarations if overloading
becomes habitual.

note

This guideline does not prohibit subprograms with identical names declared in different packages.

5.7.4 Overloaded Operators
guideline

• Preserve the conventional meaning of overloaded operators (Nissen and Wallis 1984).

" Use " ' to identify adding, joining, increasing, and enhancing kinds of functions.

* Use "-" to identify subtraction, separation, decreasing, and depleting kinds of functions.

example
function "+" (X MATRIX:

Y MATRIX) return MATRIX;

SUM_MATRIX := MATRIX A + MATRIXB;

rationale

Subverting the conventional interpretation of operators leads to confusing code.

note

There are potential problems with any overloading. For example, if there are several versions of the
operator, and a change to one of them affects the number or order of its parameters, locating the
occurrences that must be changed can be difficult.

5.8 USING EXCEPTIONS
Ada exceptions are a reliability-enhancing language feature designed to help specify program behavior in the
presence of errors or unexpected events. Exceptions are not intended to provide a general purpose control
construct. Further, liberal use of exceptions should not be considered sufficient for providing full software
fault tolerance (Melliar-Smith and Randall 1987).

This section addresses the issues of how and when to avoid raising exceptions, how and where to handle
them, and whether to propagate them. Information on how to use exceptions as part of the interface to a
unit, including what exceptions to declare and raise and under what conditions to raise them.

5.8.1 Handling Versus Avoiding Exceptions
guideline

• Avoid causing exceptions to be raised when it is easy and efficient to do so.

" Provide handlers for exceptions which cannot be avoided.

" Use exception handlers to enhance readability by separating fault handling from normal execution.

" Do not use exceptions and exception handlers as goto statements.

rationale

In many cases, it is possible to detect easily and efficiently that an operation you are about to perform
would raise an exception. In such a case, it is a good idea to do so rather than allowing the exception to
be raised handling it with an exception handler. For example, check each pointer for .NULL when
traversing a linked list of records connected by pointers. Also, test an integer for zero before dividing by
it, and call an interrogative function STACK_ IsEMPTY before invoking the Pop procedure of a stack
package. Such tests are appropriate when they can be performed easily and efficiently, as a natural part
of the algorithm being implemented.

80 Ada QUALITY AND STYLE

However, error detection in advance is not always so simple. There are cases where such a test is too
expensive or too unreliable. In such cases, it is better to attempt the operation within the scope of an
exception handler so that the exception is handled if it is raised. For example, in the case of a linked list
implementation of a list, it is very inefficient to call a function ENTRY EXISTS before each call to the
procedure MODIFY_ENTRY simply to avoid raising the exception ENTRYNOTFOUND. It takes as much time to
search the list to avoid the exception as it takes to search the list to perform the update. Similarly, it is
much easier to attempt a division by a real number within the scope of an exception handler to handle
numeric overflow than to test in advance whether the dividend is too large or the divisor too small for the
quotient to be representable on the machine.

In concurrent situations, tests done in advance can also be unreliable. For example, if you want to
modify an existing file on a multi-user system, it is safer to attempt to do so within the scope of an
exception handler than to test in advance whether the file exists, whether it is protected, whether there is
room in the file system for the file to be enlarged, etc. Even if you tested for all possible errors
conditions, there is no guarantee that nothing would change after the test and before the modification
operation. You still need the exception handlers, so the advance testing serves no purpose.

Whenever such a case does not apply, normal and predictable events should be handled by the code
w-ithout the abnormal transfer of control represented by an exception. When fault handling and only
fault handling code is included in exception handlers, the separation makes the code easier to read. The
reader can skip all the exception handlers and still understand the normal flow of control of the code.
For this reason, exceptions shou1d never be raised and handled within the same unit, as a form of a goto
statement to exit from a loop, if, case, or block statement.

5.8.2 Handlers for others

guideline

* Use caution when programming handlers for others.

* Provide a handler for others in suitable frames to protect against unexpected exceptions being
propagated without bound, especially in safety critical systems.

* Use others only to catch exceptions you cannot enumerate explicitly. preferably only to flag a
potential abort.

* Avoid using others during development.

rationale

Providing a handler for others allows you to follow the other guidelines in this section. It affords a place
to catch and convert truly unexpected exceptions that were not caught by the explicit handlers. While it
may be possible to provide "fire walls" against unexpected exceptions being pitupagated without
providing handlers in every block, you can convert the unexpected exceptions as soon as they arise. The
others handler cannot discriminate between different exceptions, and, as a result, any such handler
must treat the exception as a disaster. Even such a disaster can still be converted into a user-defined
exception at that point. Since a handler for others catches any exception not otherwise handled
explicitly, one placed in the frame of a task or of the main subprogram affords the opportunity to
perform final clean-up and to shut down cleanly.

Programming a handler for others requires caution because it cannot discriminate either which
exception was actually raised or precisely where it was raised. Thus, the handler cannot make any
assumptions about what can be or even what needs to be "fixed."

The use of handlers for others during development, when exception occurrences can be expected to be
frequent, can hinder debugging. It is much more informative to the developer to see a traceback with the
actual exception listed than the converted exception. Furthermore, many tracebacks do not list the
point where the original exception was raised if it was caught by a handler.

note

The arguments in the preceding paragraph apply only to development time, when traceback listings are
useful. They are not useful to users and can be dangerous. The handler should be included in comment
form at the outset of development and the double dash rem,- -,d before delivery.

PROGRAMMING PRACTICES S I

5.8.3 Propagation

guideline

" Handle all exceptions, both user and predefined.

" For every exception that might be raised, provide a handier in suitable frames to protect against
undesired propagation outside the abstraction.

rationale

The statement that "it can never happen" is not an acceptable programming approach. You must
assume it can happen and be in control when it does. You should provide defensive code routines for the
"cannot get here" conditions.

Some existing advice calls for catching and propagating any exception to the calling unit. This advice can
stop a program. You should catch the exception and propagate it, or a substitute, only if your handier is
at the wrong abstraction level to effect recovery. Effecting recovery can be difficult, but the alternative is
a program that does not meet its specification.

Making an explicit request for termination implies that your code is in control of the situation ar._ nas
determined that to be the only safe course of action. Being in control affords opportunities to shut down
in a controlled manner (clean up loose ends, close files, release surfaces to manual control, sound
alarms), and implies that all available programmed attempts at recovery have been made.

5.8.4 Localizing the Cause of an Exception

guideline

" Do not rely on being able to identify the fault raising predefined or implementation-defined
exceptions.

* Use blocks to associate localized sections of code with their own exception handlers.

example

See Guideline 5.6.9.

rationale

It is very difficult to determine in an exception handler exactly which statement and which operation
within that statement raised an exception, particularly the predefined and implementation-defined
exceptions. The predefined and implementation-defined exceptions are candidates for conversion and
propagation to higher abstraction levels for handling there. User-defined exceptions, being more closely
associated with the application, are better candidates for recovery within handlers.

User-defined exceptions can also be difficult to localize. Associating handlers with small blocks of code
helps to narrow the possibilities, making it easier to program recovery actions. The plaLement of
handlers in small blocks within a subprogram or task body also allows resumption of the subprogram or
task after the recovery actions. If you do not handle exceptions within blocks, the only action available
to the handlers is to shut down the task or subprogram as prescribed in Guideline 5.8.3.

note

The optimal size for the sections of code you choose to protect by a block and its exception handlers is
very application-dependent. Too small a granularity forces you to expend much more effort in
programming for abnormal actions than for the normal algorithm. Too large a gianularity reintroduces
the problems of determining what went wrong and of resuming normal flow.

5.9 ERRONEOUS EXECUTION
An Ada program is erroneous when it violates or extends the rules of the language governing program
behavior. Neither compilers nor run-time environments are able to detect erroneous behavior in all
circumstances and contexts. The effects of erroneous execution are unpredictable (Ada Reference Manual
1983, § 1 6). If the compiler does detect an instance of an erroneous program, its options are to indicate a

82 Ada QUALITY AND STYLE

compile time error, to insert the code to raise PROGRAM-ERROR, and possibly to write a message to that effect,
or to do nothing at all.

Erroneousness is not a concept unique to Ada. The guidelines below describe or explain the specific
instances of erroneousness defined in the Ada Language Reference Manual (Department of Defense 1983)

5.9.1 Unchecked Conversion

guideline
" Use UNCHECKED_CONVERSION only with the utmost care (Ada Reference Manual 1983, §13.10.2).
" Isolate the use of UNCHECKED_CONVERSION in package bodies.

rationale

An unchecked conversion is a bit-for-bit copy without regard to the meanings attached to those bits and
bit positions by either the source or the destination type. The source bit pattern can easily be
meaningless in the context of the destination type. Unchecked conversions can create values that violate
type constraints on subsequent operations. Unchecked conversion of objects mismatched in size has
implementation-dependent results.

5.9.2 Unchecked Deallocation

guideline
" Use UNCHECKEDDEALLOCATION purposefully and carefully.

* Isolate the use of UNCHECKEDDEALLOCATION in package bodies.

rationale

Most of the reasons for using unchecked deallocation with caution have heen given in Guideline 5 4.3.
When this feature is used, there is no checking that there is only one access path to the storage being
deallocated. Thus, any other access paths are not made null. Depending on such a check is erroneous

5.9.3 Dependence on Parameter Passing Mechanism

guideline
* Do not write code whose correct execution depends on the particular parameter passing mechanism

used by an implementation (Ada Reference Manual 1983 and Cohen 1986).

example

The output of this program depends on the particular parameter passing mechanism that was used.

PROGRAMMING PRACTICES 83

with TEXT_10;
use TEXT_10;
procedure OUTER is

type COORDINATES is
record

X INTEGER 0;
Y INTEGER 0;

end record;

OUTERPOINT : COORDINATES;

package INTEGER_10 is new TEXT_IO.INTEGERIO (INTEGER);
use INTEGERIO;

procedure INNER (INNER_POINT : in out COORDINATES) is
begin -- INNER

INNERPOINT.X := 5;

-- The following line causes the output of the program to
-- depend on the parameter passing mechanism.
PUT (OUTERPOINT.X);

end INNER;

begin -- OUTER

PUT (OUTER POINT.X);
INNER (OUTER_POINT);
PUT (OUTER POINT.X);

end OUTER;

If the parameter passing mechanism is by copy, the results on the standard output file are:
0OO

If the parameter passing mechanism is by reference, the results are:
055

rationale
The language definition specifies that a parameter whose type is an array, record, or task type can be
passed by copy or reference. It is erroneous to assume that either mechanism is used in a particular case.

exceptions
Frequently, when interfacing Ada to foreign code, dependence on parameter passing mechanisms used
by a particular implementation is unavoidable. In this case, isolate the calls to the foreign code in an
interface package that exports operations that do not depend on the parameter-passing mechanism.

5.9.4 Multiple Address Clauses

guideline
Use address clauses to map variables and entries to the hardware device or memory, not to model
the FORTRAN "equivalence" feature.

example
SINGLEADDRESS : constant

INTERRUPT VECTORTABLE : HARDWAREARRAY;
for INTERRUPTVECTORTABLE use at SINGLEADDRESS;

rationale
The result of specifying a single address for multiple objects or program units is undefined, as i..
specifying multiple addresses for a single object or program unit. Specifying multiple address clauses for
an interrupt entry is also undefined. It does not necessarily overlay objects or program units, or associate
a single entry with more than one interrupt.

84 Ada QUALITY AND STYLE

5.9.5 Suppression of Exception Check
guideline

• Do not suppress exception checks during development.

" Minimize suppression of exception checks during peration.

rationale

If you disable exception checks and program execution results in a condition in which an exception
would otherwise occur, the program execution is erroneous. The results are unpredictable. Further, you
must still be prepared to deal with the suppressed exceptions if they are raised in and propagated from
the bodies of subprograms, tasks, and packages you call.

The pragma SUPPRESS grants an implementation permission to suppress run time checks, but it does not
require it to do so. It cannot be relied upon as a general technique for performance improvement.

If you need to use pragma SUPPRESS, postpone it until it is clear that the program is correct, but too slow,
and there is no other alternative for improving performance. Pragma SUPPRESS can then be used to
improve performance for specific, well-understood objects/types.

5.9.6 Initialization
guideline

* Initialize all objects prior to use.

* Ensure elaboration of an entity before using it.

• Use function calls in declarations cautiously.

example
...

package ROBOT_CONTROLLER is

function SENSE return POSITION;

end ROBOTCONTROLLER;

package body R(IBOT_CONTROLLER is

GOAL : POSITION := SENSE;
The underlined text is illegal.

function SENSE return POSITION is

end SENSE;

begin -- ROBOT_CONTROLLER
GOAL := SENSE; -- This line is legal.

end ROBOTCONTROLLER;

rationale

Ada does not define an initial default value for objects of any type other than access types. Using the
value of an object before it has been assigned a value causes unpredictable behavior, possibly raising an
exception. Objects can be initialized implicitly by declaration or explicitly by assignment statements.
Initialization at the point of declaration is safest as well as easiest for maintainers. You can also specify
default values for fields of records as part of the type declarations for those records.

Ensuring initialization does not imply initialization at the declaration. In the example above, GOAL must
be initialized via a function call. This cannot occur at the declaration, because the function SENSE has not
yet been elaborated, but can occur later as part of the sequence of statements of the body of the
enclosing package.

PROGRAMMING PRACTICES 85

An unelaborated function called within a declaration (initialization) raises an exception that must be
handled outside of the unit containing the declarations. This is true for any exception the function raises
even if it has been elaborated.

If an exception is raised by a function call in a declaration, it is not handled in that immediate scope. It is
raised to the enclosing scope. This can be controlled by nesting blocks.

note

Sometimes, elaboration order can be dictated with pragma ELABORATE. Pragma ELABORATE only applies to
library units.

5.10 SUMMARY

optional parts of the syntax
" Associate names with loops when they are nested.

* Associate names with blocks when they are nested.

" Use loop names on all exit statements.

* Include the simple name at the end of a package specification and body.

" Include the simple name at the end of a task specification and body.

" Include the simple name at the end of an accept statement.

• Include the designator at the end of a subprogram body.

parameter lists
" Name formal parameters descriptively to reduce the need for comments.

* Use named parameter association in calls of infrequently used subprograms or entries with many
formal parameters.

" Use named association for constants, expressions, and literals in aggregates.

" Use named association when instantiating generics.

" Use named association for clarification when the actual parameter is any literal or expression.

" Use named association when supplying a nondefault value to an optional parameter.

* Provide default parameters to allow for occasional, special use of widely used subprograms or
entries.

" Place default parameters at the end of the formal parameter list.

• Consider providing default values to new parameters added to an existing subprogram.

• Show the mode indication of all procedure and entry parameters.

* Select the most restrictive mode possible.

• Declare parameters in a consistent order.

types

" Use existing types as building blocks by deriving new types from them.

" Use range constraints on subtypes.

* Define new types, especially derived types, to include the largest set of possible values, including
boundary values.

* Constrain the ranges of derived types with subtypes, excluding boundary values.

" Do not use anonymous types.

• Use limited private types in preference to private types.

* Use private types in preference to nonprivate types.

* Explicitly export needed operations rather than easing restrictions

86 Ada QUALITY AND STYLE

data structures
" Use records to group heterogeneous but related data.

" Consider records to map to I/O device data.
* Record structures should not always be flat. Factor out common parts.

* For a large record structure, group related components into smaller subrecords.

" For nested records, pick element names that read well when inner elements are referenced.

* Differentiate between static and dynamic data. Use dynamically allocated objects with caution.

" Use dynamically allocated data structures only when it is necessary to create and destroy them
dynamically or to be able to reference them by different names.

* Do not drop pointers to undeallocated objects.

* Do not leave dangling references to deallocated objects.

• Initialize all access variables and components.

* Do not rely on memory deallocation.

• Deallocate explicitly.

Use length clauses to specify total allocation size.

* Provide handlers for STORAGE_ERROR.

expressions

* Use FIRST or 'LAST instead of numeric literals to represent the first or last values of a range.

* Use the type or subtype name of the range instead of 'FIRST . "LAST.

* Use array attributes 'FIRST, -LAST, .r LENGTH instead of numeric literals for accessing arrays.

* Use the _RANGE of the array instead of the name of the index type to express a range.

* Use RANGE instead of 'FIRST . 'LAST to express a range.

* Use parentheses to specify the order of subexpression evaluation where operators from different
precedence levels are involved, and to clarify expressions.

• Avoid names and constructs that rely on the use of negatives.

• Choose names of flags so they represent states that can be used in positive form.

" Use short-circuit forms of the logical operators.

* Use type qualified expressions instead of type conversions wherever possible.

* Use <= and >= in relational expressions with real operands instead of

statements

* Minimize the depth of nested expressions.

• Minimize the depth of nested control structures.

* Try simplification heuristics

* Use slices rather than a loop to copy part of an array.

* Never use an others choice in a case statement.

* Do not use ranges of enumeration literals in case statements.

* If you use an if statement instead of a case statement. use marker comments indicating the cases.

* Use for loops whenever possible (when the number of iterations is computable).

• Use while loops when the number of iterations is not computable, but a simple continuation
condition can be applied at the top of the loop.

* Use plain loops with exit statements for more complex situations.

• Avoid exit statements in while and for loops.

PROGRAMMING PRACTICES 87

* Minimize the number of ways to exit a loop.

* Use exit statements to enhance the readability of loop termination code.
" Use exit when ... rather than if ... then exit whenever possible.
• Review exit statement placement.

• Understand and consider specifying bounds on loops.

* Understand and consider specifying bounds on recursion.

" Do not use goto statements unless you are sure there is no alternative.

" If you must use a goto statement, highlight both it and the label.

" Minimize the number of returns from a subprogram.

" Highlight returns with comments or white space to keep them from being lost in other code.

* Use blocks liberally and for their intended purposes.

* Use an aggregate instead of a sequence of assignments to assign values to all fields of a record.

" Use an aggregate instead of a temporary variable when building a record to pass as an actual
parameter.

* Use named component association in aggregates.

visibility

• Minimize using the use clause.

* Localize the effect of the use clauses you must employ.

• Use the renames clause judiciously and purposefully.

* Rename a long fully qualified name to reduce the complexity if it becomes unwieldy (Guideline
3.1.4).

* Rename declarations for visibility purposes rather than using the use clause especially infix operators
(Guideline 5.7.1).

* Rename parts when interfacing to reusable components originally written with nondescriptive or
inapplicable nomenclature.

* Use a project-wide standard list of abbreviations to rename common packages.

* Limit overloading to widely used subprograms that perform similar actions on arguments of different
types.

" Preserve the conventional meaning of overloaded operators (Nissen and Wallis 1984).

* Use "+" to identify adding, joining, increasing, and enhancing kinds of functions.

" Use "-" to identify subtraction, separation, decreasing, and depleting kinds of functions.

using exceptions
• Avoid causing exceptions to be raised when it is easy and efficient to do so.

* Provide handlers for exceptions which can,,ot be avoided.

* Use exception handlers to enhance readability by separating fault handling from normal execution.

- Dc not use exceptions and exception handlers as goto statements.

• Use caution when programming handlers for others.

• Provide a handler for others in suitable frames to protect against unexpected exceptions being
propagated without bound, especially in safety critical systems.

" Use others only to catch exceptions you cannot enumerate explicitly, preferably only to flag a
potential abort.

* Avoid using others during development.

• Handle all exceptions, both user and predefined.

88 Ada QUALITY AND STYLE

* For every exception that might be raised, provide a handler in suitable frames to protect against
undesired propagation outside the abstraction.

* Do not rely on being able to identify the fault raising predefined or implementation-defined
exceptions.

* Use blocks to associate localized sections of code with their own exception handlers.

erroneous execution
" Use UNCHECKED_CONVERSION only with the utmost care.

" Isolate the use Of UNCHECKEDCONVERSION in package bodies.
• Use UNCHECKEDDEALLOCATION purposefully and carefully.

* Isolate the use of UNCHECKED DEALLOCATION in package bodies.

* Do not write code whose correct execution depends on the particular parameter passing mechanism
used by an implementation.

* Use address clauses to map variables and entries to the hardware device or memory, not to model
the FORTRAN "equivalence" feature.

* Do not suppress exception checks during development.

* Minimize suppression of exception checks during operation.

* Initialize all objects prior to use.

• Ensure elaboration of an entity before using it.

• Use function calls in declarations cautiously.

CHAPTER 6
Concurrency

Concurrency exists as either apparent concurrency or real concurrency. In a single processor environment
apparent concurrency is the result of interleaved execution of concurrent activities. In a multi-processor
environment real concurrency is the result of overlapped execution of concurrent activities.

Concurrent programming is more difficult and error prone than .sequential programming. The concurrent
programming features of Ada are designed to make it easier to write and maintain concurrent programs
which behave consistently and predictably, and avoid such problems as deadlock and starvation. The
language features themselves cannot guarantee that programs have these desirable properties. They must be
used with discipline and care, a process supported by Lhe guidelines in this chapter.

The correct usage of Ada concurrency features results in reliable, reusable, and portable software. For
example, using tasks to model concurrent activities and using the rendezvous for the required
synchronization between cooperating concurrent tasks. Misuse of language features results in software that is
unverifiable and difficult to reuse or port. For example, using task priorities or delays to manage this
synchronization.

Avoid assuming that the rules of good sequential program design can be applied, by analogy, to concurrent
programs. For example, while multiple returns from subprograms should be discouraged (Guideline 5.6. S).
multiple task exits or termination points are often necessary and desirable.

6.1 TASKING
Many problems map naturally to a concurrent programming solution. By understanding and correctly using
the Ada language tasking features you can produce solutions that are independent of target implementation.
Fasks provide a means, within the Ada language, of expressing concurrent asynchronous threads of control
and relieving programmers from the problem of explicitly controlling multiple concurrent activities.

Tasks cooperate to perform the required activities of the software. Synchronization is required between
individual tasks. The Ada rendezvous provides a powerful mechanism for this synchronization.

6.1.1 Tasks
guideline

" Use tasks to model asynchronous entities within the problem domain.

" Use tasks to control or synchronize access to tasks or devices.

* Use tasks to define concurrent algorithms.

* Use tasks to perform cyclic or prioritized activities (NASA 1987).

IS9

90 Ada QUALITY AND STYLE

example

Asynchronous entities are the naturally concurrent objects within the problem domain. These tend to be
objects in the problem space that have state, such as elevators in an elevator control system or satellites
i-, a global positioning system. The following is an example for an elevator control system:

package ELEVATOROBJECTS is

type ELEVATOR_STATES is (MOVING, IDLE, STOPPED. AT_FLOOR);
type UPDOWN is (UP, DOWN);
task type ELEVATORS is

entry INITIALIZE;

entry CLOSE_DOOR;
entry OPENDOOR;
entry STOP;
entry IDLE;
entry START (DIRECTION in UP_DOWN)
entry CURRENT_STATE (MY_STATE out ELEVATOR-STATES;

CURRENTLOCATION: out FLOAT);
end ELEVATORS;

end ELEVATOROBJECTS;

A task DISPLAY_MANAGER that manages updates from multiple concurrent user tasks to a graphic display is
an example of a control and synchronization task.

Multiple tasks that implement the decomposition of a large matrix multiplication algorithm is an
example of an opportunity for real concurrency in a multi-processor target environment. In a single
processor target environment this approach may not be justified.

A task DISPLAY_UPDATE that updates a RADAR display every 30 milliseconds is an example of a cyclic
activity supported by a task.

A task PRIORITYSHUTDOWN that detects an over-temperature condition in a nuclear reactor and
performs an emergency shutdown of the systems is an example of a task to support a high priority
activity.

rationale

These are the intended uses of tasks. They all revolve around the fact that a task has its own thread of
control separate from the main subprogram. The conceptual model for a task is that it is a program with
its own virtual processor. This provides the opportunity to model entities from the problem domain in
terms more closely resembling those entities, and the opportunity to deal with physical devices on their
own terms as a separate concern from the main algorithm of the application. Tasks also allow the
pr, .ramming of naturally concurrent activities in their own terms, and they can be mapped to multiple
processors when these are available.

Resources shared between multiple tasks, such as devices and abstract data structures, require control
and synchronization since their operations are not atomic. In our display manager example, drawing a
circle on the display may require that many low level operations be performed without interruption by
another task. The display manager would ensure that no other task accesses the display until all these
operations are complete.

Cyclic and prioritized tasks allow the programmer to ensure that these critical activities occur when
required without the complexity of explicit scheduling them within the application.

6.1.2 Anonymous Task Types

guideline

* Use anonymous task types for single instances.

example

The example below illustrates the syntactic differences between the kinds of tasks discussed here.
BUFFER iS static and has a name, but its type is anonymous. Because it is declared explicitly, the task type
BUFFERMANAGER is not anonymous. CHANNEL is static and has a name, and its type is not anonymous. Like
all dynamic objects, ENCRYPTED_PACKETQUEUE.ALL is essentially anonymous, but its type is not.

CONCURRENCY 91

task BUFFER is ...
task type BUFFERMANAGER is ..
type REPLACEABLE_BUFFER is access BUFFERMANAGER;

ENCRYPTEDPACKET_QUEUE REPLACEABLE_BUFFER;
CHANNEL BUFFER_MANAGER;

ENCRYPTEDPACKETQUEUE new BUFFER_MANAGER;

rationale
The use of named tasks of anonymous type avoids a proliferation of task types that are only used once,
and the practice communicates to maintainers that there are no other task objects of that type. If the
need arises later to have additional tasks of the same type, then the work required to convert a named
task to a task type is minimal. It involves including task type declarations and deciding whether static or
dynamic tasks should be used.

The consistent and logical use of task types, when necessary, contributes to understandability. Identical
tasks can be derived from a common task type. Dynamically allocated task structures are necessary
when you must create and destroy tasks dynamically or when you must reference them by different
names.

6.1.3 Dynamic Tasks

guideline
* Use caution with dynamically allocated task objects.

" Avoid referencing terminated tasks through their aliases.

* Avoid disassociating a task from all names.

example

The approach used in the example below is not recommended. The example shows why caution is
required with dynamically allocated task objects. It illustrates an attempt to call an entry in an aborted
task after the abort operation was applied to the alias. In the example, the limited number of traLkable
radar targets are tasks continuously updating their positions based on previous position and velocity until
corrected by a new scan. Out-of-range targets are dropped (through use of the abort statement).

Execute these lines in subprograms in the radar package first:

TARGET (LATEST ACQUISITION) := new RADARTRACK;
TARGET (LATESTACQUrSITION).INITIALIZE

(SELF => TARGET (LATESTACQUISITION),
VELOCITY => ...
POSITION -> ...

Execute these lines in the body of task type RADARJTRACK next. They are not inside an accept statement:
NEWPOSITION := INTEGRATE (POSITION, VELOCITY);
if OUT OF RANGE (NEWPOSITION) then

abort SELF; --notice abort
end if;

Execute this line in a subprogram in the radar package last. This line can raise TASKING_ERROR due to
calling an entry of an aborted task:

TARGET (SCAN_HIT).CORRECTREADINGS (POSITION, VELOCITY);

rationale

A dynamically allocated task object is a task obj- .t created by the execution of an allocator. They can
be used to avoid limiting the number of alI xable objects. This is useful when the upper limit is
unknown or for performance purposes.

Allocated task objects referenced by access variables allow you to generate aliases; multiple references
to the same object. Anomalous behavior can arise when you reference an aborted task by another
name.

92 Ada QUALITY AND STYLE

A dynamically allocated task that is not associated with a name (a "dropped pointer") cannot be
referenced for the purpose of making entry calls, nor can it be the direct target of an abort statement
(see Guideline 5.4.3).

6.1.4 Priorities
guideline

Do not rely on pragma PRIORITY to perform precise scheduling.

example
For example, let the tasks have the following priorities:

task T1 ... pragma PRIORITY (HIGH) ... SERVER.OPERATION ...
task T2 ... pragma PRIORITY (MEDIUM) ... SERVER.OPERATION ...
task SERVER .. accept OPERATION ...

At some point in its execution, T1 is blocked. Otherwise, we would not expect T2 or SERVER tO ever get
anything done. If TI is blocked, it is possible for T2 to reach its call to SERVER's entry (OPERATION) before
T1I. Suppose this has happened and that Ti now makes its entry call before SERVER has a chance to accept
T2'S call.

This is the timeline of events so far:
Ti blocks
T2 calls SERVER.OPERATION
T1 unblocks
T1 calls SERVER.OPERATION
DOES SERVER accept the call from T1 or from T2?

Some people might expect that, due to its higher priority, Ti'S call would be accepted by SERVER before
that of T2. However, entry calls are queued in first-in-first-out (FIFO) order and not queued in order of
priority. Therefore, the synchronization between Ti and SERVER is not affected by Ti'S priority. As a
result, the call from T2 is accepted first. This is a form of priority inversion.

A solution to this might be to provide an entry for a HIGH priority user and an entry for a MEDIUM
priority user.

task SERVER is
entry OPERATION HIGH PRIORITY;
entry OPERATION_MEDIUMPRIORITY;

end SERVER;
task body SERVER is

procedure OPERATION; -- provides functions from previous example

begin
loop

select
accept OPERATION_HIGH_PRIORITY do

OPERATION;
end OPERATIONHIGHPRIORITY;

else
select

accept OPERATION_HIGH_PRIORITY do
OPERATION;

end OPERATION_HIGHPRIORITY;
or

accept OPERATIONMEDIUM PRIORITY do
OPERATION;

end OPERATIONMEDIUMPRIORITY;
or

terminate;
end select;

end select;
end loop;

end SERVER;

CONCURRENCY 93

However, in this approach Ti still waits for one execution of OPERATION when T2 has already gained
control of the task SERVER. In addition, the approach increases the communication complexity (see
Guideline 6.2.6).

rationale

The pragma PRIORITY allows relative priorities to be placed on tasks to accomplish scheduling. Precision
becomes a critical issue with hard-deadline scheduling. However, there are certain problems associated
with using priorities that warrant caution.

Priority inversion occurs where lower priority tasks are given service while higher priority tasks remain
blocked. In the example above, this occured because entry queues are serviced in FIFO order, not by
priority. There is another situation referred to as a race condition. A program like the one in the first
example might often behave as expected as long as TI calls SERVER. OPERATION only when T2 is not
already using SERVER. OPERATION or waiting. You cannot rely on Ti always winning the race, since that
behavior would be due more to fate than to the programmed priorities. Race conditions change when
either adding code to some unrelated task or porting this code to new target. Task priorities are not a
means of achieving mutual exclusion.

There is work being done to address such problems, including Rate Monotonic Analysis (Sha, L. and J.
B. Goodenough, 1989).

note

Priorities are used to control when tasks run relative to one another, i.e. when both tasks are eligible to
execute, that is, not blocked waiting at an entry, the highest priority task will be given precedence.
However, the most critical tasks in an application do not always. have the highest priority. For example,
support tasks or tasks with small periods may have higher priorities, because they need to run frequently.
Any blocking might cause a bottleneck.

6.1.5 Delay Statements
guideline

* Do not depend on a particular delay being achievable (Nissen and Wallis 1984).

* Do not use a busy waiting loop instead of a delay.

* Design to limit polling to those cases where absolutely necessary.

* Do not use knowledge of the execution pattern of tasks to achieve timing requirements.

example

In the following example the period drifts over time:

PERIODIC:
loop

delay INTERVAL;
... -- some actions

end loop PERIODIC;

The following example shows how to compensate for the incorrectness of the delay statement. This
approach works well when the periodic requirement can be satisfied with an average period. Periodic
tasks based on a delay can drift from their schedule. Prevention of this drift can be achieved b\
calculating the next time-to-occur based on the actual time of the current execution. The following
example illustrates this tactic.

94 Ada QUALITY AND STYLE

NO-DRIFT:
declare

use CALENDAR;
-- INTERVAL is a global constant of type DURATION
NEXT TIME : TIME := CLOCK + INTERVAL;

begin
PERIODIC:

loop
delay NEXT TIME - CLOCK;
... -- some actions
NEXT TIME := NEXT TIME + INTERVAL;

end loop PERIODIC;
end NODRIFT:

rationale

The Ada language definition only guarantees that the delay time is a minimum. The meaning of a delay
statement is that the task is not scheduled for execution before the interval has expired. In other words,
a task becomes eligible to resume execution as soon as the amount of time has passed. However, there is
no guarantee of when (or if) it is scheduled after that time. This must be the case in light of the
potentially ever changing task and priority mix with which the scheduling algorithm must deal.

A busy wait can interfere with processing by other tasks. It can consume the very processor resource
necessary for completion of the activity for which it is waiting. Even a loop with a delay can have the
impact of busy waiting if the planned wait is significantly longer then the delay interval. If a task has
nothing to do, it should be blocked at an accept or select statement.

Using knowledge of the execution pattern of tasks to achieve timing requirements is nonportable since
the underlying scheduling algorithm may change.

6.2 COMMUNICATION
The need for tasks to communicate gives rise to most of the problems that make concurrent programming so
difficult. Used properly, Ada's intertask communication features can improve the reliability of concurrent
programs; used thoughtlessly they can introduce subtle errors that can be difficult to detect and correct.

6.2.1 Efficient Task Communications
guideline

" Minimize the work performed during a rendezvous.

* Minimize the work performed in the selective wait loop of a task.

example

In the following example the statements in the accept block are performed as part of the execution of
both the caller task and the task SERVER which contains OPERATION. The statements after the accept
block are executed before SERVER can go back to accept additional calls to OPERATION.

loop
select

accept OPERATION (...) do
-- These statements are executed during rendezvous.
-- Both caller and SERVER are blocked during this time.

end OPERATION;

-- These statements are not executed during rendezvous.
-- Their execution delays getting back to the accept.

end select;
-- These statements are also not executed during rendezvous.
-- Their execution delays getting back to the accept.

end loop;

CONCURRENCY 95

rationale
Only work that needs to be performed during a rendezvous, such as saving or generating parameters,
should be allowed in the statements following the accept statement to minimize the time required to
rendezvous.

In the example, callers to OPERATION are blocked while SERVER is executing statements before returning to

the accept. This work should be limited to the services provided by SERVER.

note

In some cases, additional functions other than the services provided may be added to a task. For
example, a task controlling a communication device may be responsible for a periodic BUILTINTEST

function to ensure that the device is operating correctly. This type of addition should be done with care
realizing that the response time of the task is impacted.

6.2.2 Defensive Task Communication
guideline

• Provide a handler for exception PROGRAMERROR wherever there is no else in a selective wait
statement (Honeywell 1986).

" Make systematic use of handlers for TASKINGERROR.

" Be prepared to handle exceptions during a rendezvous.

example

This block allows recovery from except. ns raised while attempting to communicate a command to a
task controlling the throttle.

ACCELERATE:
begin

THROTTLE. INCREASE (STEP);

exception
when TASKINGERROR =>

when CONSTRAINTERROR
I NUMERIC_ERROR =>

when THROTTLETOOWIDE =>

end ACCELERATE;

In this select statement, if all the guards happen to be closed, the program can continue by executing the
else part. There is no need for a handler for PROGRAMERROR. Other exceptions can still be raised while
evaluating the guards or attempting to communicate.

BUFFER:
begin

select
when . . .=>

accept ...

or
when . . .=>

accept ...
else

end select;
exception

when CONSTRAINTERROR
NUMERIC_ERROR =>

end BUFFER;

In this select statement, if all the guards happen to be closed, exception PROGRAM_ERROR will be raised.

Other exceptions can still be raised while evaluating the guards or attempting to communicate.

96 Ada QUALITY AND STYLE

BUFFER:
begin

select
when ... =>

accept ...
or

when ... =>
delay ...

end select;
exception

when PROGRAM-ERROR =>

when CONSTRAINT_ERROR

I NUMERIC_ERROR =>

end BUFFER;

rationale

The exception PROGRAM ERROR is raised if a selective wait statement (select statement containing accepts)
is reached, all of whose alternatives are closed (i.e., the guards evaluate to FALSE and there are no
alternatives without guards), unless there is an else part. When all alternatives are closed, the task can
never again progress, so there is by definition an error in its programming. You must be prepared to
handle this error should it occur.

Since an else part cannot have a guard, it can never be closed off as an alternative action, thus its
presence prevents PROGRAMERROR. However, an else part, a delay alternative, and a terminate
alternative are all mutually exclusive, so you will not always be able to provide an else part. In these
cases, you must be prepared to handle PROGRAMERROR.

The exception TASKING_ERROR can be raised in the calling task whenever it attempts to communicate.
There are many situations permitting this. Few of them are preventable by the calling task.

If an exception is raised during a rendezvous and not handled in the accept statement, it is propagated to
both tasks and must be handled in two places. See Section 5.8.

note

There are other ways to prevent PROGRAMERROR at a selective wait. These involve leaving at least one
alternative unguarded, or proving that at least one guard will evaluate TRUE under all circumstances. The
point here is that you, or your successors, will make mistakes in trying to do this, so you should prepare
to handle the inevitable exception.

6.2.3 Attributes 'COUNT, 'CALLABLE and 'TERMINATED

guideline

" Do not depend on the values of the task attributes 'CALLABLE or 'TERMINATED (Nissen and Wallis
1984).

" Do not depend on attributes to avoid TASKINGERROR on an entry call.

" Do not depend on the value of the entry attribute 'COUNT.

example

In the following examples INTERCEPT'CALLABLE is a boolean indicating if a call can be made to the task
INTERCEPT without raising the exception TASKING_ERROR. LAUNCH'COUNT indicates the number of callers
currentiy waiting at entry LAUNCH. INTERCEPT TERMINATED is a boolean indicating if the task INTERCEPT is in
terminated state.

This task is badly prograinmed because it relies upon the values of the 'COUNT attributes not changing
between evaluating and acting upon them.

CONCURRENCY 97

task body INTERCEP is

select
when (LAUNCH'COUNT > 0) and

(RECALL'COUNT = 0) =>
accept LAUNCH;

or
accept RECALL;

end select;

...

If the following code is preempted between evaluating the condition and initiating the call, the
assumption that the task is still callable may no longer be valid.

if INTERCEPT'CALLABLE then
INTERCEPT. RECALL;

rationale

Attributes 'CALLABLE, TERMINATED, and 'COUNT are all subject to race conditions. Between the time you
reference an attribute and the time you take action the value of the attribute may change. Attributes
'CALLABLE and 'TERMINATED convey reliable information once they become FALSE and TRUE, respectively.
If 'CALLABLE is FALSE, you can expect the callable state to remain constant. If 'TERMINATED is TRUE, you
can expect the task to remain terminated. Otherwise, 'TERMINATED and 'CALLABLE can change between
the time your code tests them and the time it responds to the result.

The Ada Language Reference Manual (Department of Defense 1983) itself warns about the
asynchronous increase and decrease of the value of 'COUNT. A task can be removed from an entry queue
due to execution of an abort statement as well as expiration of a timed entry call. The use of this attribute
in guards of a selective wait statement may result in the opening of alternatives which should not be
opened under a changed value of 'COUNT.

exceptions

Use extreme care.

6.2.4 Shared Variables

guideline

U Lse the rendezvous mechanism, not shared variables, to pass data between tasks.

• Do not use shared variables as a task synchronization deice.

example

This code will either print the same line more than once, fail to print so.,e lines, or print garbled lines
(part of one line followed by part of another) nondeterministically.

task body ROBOT_ARMDRIVER is

begin
loop

CURRENTCOMMAND := COMMAND;
-- send to device

end loop;
end ROBOTARMDRIVER;

task body STREAM-SERVER is

begi r.
loop

STREAMREAD (STREAMFILE, COMMAND):
end loop;

end STREAMSERVER;

98 Ada QUALITY AND STYLE

rationale

There are mlny techniques for protecting and synchronizing data access. You must program most of
them yourself to use them. It is difficult to write a progra- that shares data correctly. If it is not done
correctly, the reliability of the program suffers. Ada provides the rendezvous to support synchronization
and communication of information between tasks. Data that you might be tempted to share can be put
into a task body with read and write entries to access it.

The example above has a race condition requiring perfect interleaving of execution. This code can be
made more reliable by introducing a flag that is set by SPOOLSERVER and reset by LINEPRINTER_DRIVER.

An if (condition flag) then delay ... else would be added to each task loop in order to ensure that
the interleaving is satisfied. Hcwever, notice that this approach requires a del- and the associated
rescheduling. Presumably this rescheduling overhead is what is being avoided by not using the
rendezvous.

exceptions

For some required synchronizations the rendezvous may not meet time constraints. Each case should be
analyzed in detail to justify the use of pragma SHARED, which presumably has less overhead than the
rendezvous. Be careful to correctly implement a data access synchronization technique. Without great
effort you might get it wrong. Pragma SHARED can serve as an expedient against poor run time support
systems. Do not always use this as an excuse to avoid the rendezvous because implementations are
allowed to ignore pragma SHARED (Nissen and Wallis 1984). Pragma SHARED affects only those objects
which storage and retrieval are implemented as indivisible operations. Also, pragma SHARED can only be
used for variables of scalar or access type.

note

As pointed out above, a guarantee of noninterference may be difficult with implementations that ignore
pragma SHARED. If you ri-Ust share data, share the absolute minimum amount necessary. and be
especially careful. As always, encapsulate the synchronization: portions of code.

The problem is with variables. Constants, such as tables fixed at compile time. may be safe!y shared
between tasks.

For further reading on shared variables, see (Dewar, R., 1990).

6.2.5 Tentative Rendezvous Constructs

guideline

" Use caution with conditional entry calls.

" Use caution with selective waits with else parts.

• Do not depend upon a particular delay in timed entry calls.

" Do not depend upon a particular delay in selective waits with delay alternatives.

example

The conditional entry call in the following code results in a race condition that may degenerate into a
busy waiting loop. The task CURRENTPOSITION conLaining entry REQUEST_NEW_COORDINATES may never
execute if this task has a higher priority than CURRENTPOSITION, because this task doesn't release the
processing resource.

loop
select

CURRENTPOSITION.REQUEST NEuy COORDINATES (...);

calculate target location based on new coordinates

else
-- calculate targe' location based on last locations

end select
end loop

CONCURRENCY 99

The addition of a delay as shown may allow CURRENT_POSITION tO execute until it reaches an accept for
REQUESTNEWCOORDINATES.

loop
select

CURRENT POSITION.REQUESTNEWCOORDINATES (...);
-- calculate target location based on new coordinates

else
-- calculate target location based on last locations

delay NEXTEXECUTE-CLOCK;
NEXT EXECUTE := NEXTEXECUTE + PERIOD;

enu select
end loop

The following selective wait with else again does not degenerate into a busy wait loop only because of the
addition of a delay statement.

loop
delay NEXT_EXECUTE - CLOCK;
select

accept GET_NEW_MESSAGE .
do

-- copy message to parameters

end GETNEWMESSAGE;

else
-- perform BUILDINTEST Functions

end select;
NEXT EXECUTE := NEXTEXECUTE + TASKPERIOD;

end loop;

The following timed entry call may be considered an unacceptable implementation if lost
communications with the reactor for over 25 milliseconds results in a critical situation.

loop
select

GETREACTORSTATUS;
or

delay 0.025;
-- lost communication for more that 25 milliseconds
EMERGENCY_SHUTDOWN;

end select;
-- process reactor status

delay NEXT TIME - CLOCK;
NEXT TIME := NEXTTIME + PERIOD;

end loop;

In the following selective wait with delay example the accuracy of the coordination calculation function
may be bounded by time. For example, the required accuracy cannot be obtained unless PERIOD is within
+ or - 0.005 seconds.

loop
select

accept REQUEST NEWCOORDINATES (...) do
-- copy coordinates to parameters

end REQUEST_NEW_COORDINATES;
or

delay NEXT_EXECUTE;
end select;
NEXT EXECUTE := NEXTEXECUTE + PERIOD;
-- Read Sensors
-- execute coordinate transformations

end loop;

rationale

Using of these constructs always poses a risk of race conditions. Using them in loops, particularly with
poorly chosen task priorities, can have the effect of busy waiting.

100 Ada QUALITY AND STYLE

These constructs are very much implementation dependent. For conditional entry calls and selective
waits with else parts, the Ada Language Reference Manual (Department of Defense 1983) does not
define "immediately." For timed entry calls and selective waits with delay alternatives, implementors
may have ideas of time that differ from each other and from your own. Like the delay statement, the
delay alternative on the select construct might wait longer than the time required (see Guideline 6.1.5).

6.2.6 Communication Complexity

guideline

" Minimize the number of accept and select statements per task.

• Minimize the number of accept statements per entry.

* Minimize the number of statements within an accept.

example

-- use

accept A;
if MODE 1 then

-- do one thing
else -- MODE 2

-- do something different
end if;

-- rather than
if MODEI then

accept A do
-- do one thing

else -- MODE 2
accept A do

-- do something different
end if;

rationale

This guideline is motivated by reduction of conceptual complexity. With small numbers of accept or
select statements, the programmers of the task and calling units need not reason about the
circumstances of an entry call executing different code sequences dependent on the task's local state.

A large number of accept and select statements carries with it a large amount of intertask
communication, with its inevitable overhead. It could be that tasks which need to communicate very
frequently are poorly designed. The communication overhead should, in general, be insignificant
compared with the independent, parallel computation.

The calling task is blocked for the duration of the rendezvous. During the rendezvous, the calling task
should have to wait only if data is to be copied or returned. If additional work needs to be done as a
result of the accept construct, place it after the rendezvous.

6.3 TERMINATION
The ability of tasks to interact with each other using Ada's intertask communication features makes it
especially important to manage planned or unplanned (e.g., in response to a catastrophic exception
condition) termination in a disciplined way. To do otherwise can lead to a proliferation of undesired and
unpredictable side effects as a result of the termination of a single task.

6.3.1 Avoiding Termination

guideline

0 Place an exception handler for rendezvous within main tasking loop.

example

In the following example an exception raised using the primary sensor is used to change MODE to DEGRADED
still allowing execution of the system.

CONCURRENCY 101

loop
if MODE = PRIMARY then

select
CURRENTPOSITION_PRIMARY.REQUEST_NEWCOORDINATES ...)

end select

else
select

CURRENTPOSITIONBACKUPREQUESTNEWCOORDINATES (..)
end select

end if;
exception

when PROGRAMERROR =>
MODE := DEGRADED;

end loop

rationale
Allowing a task to terminate may not support the requirements of the system. Without an exception
handler for the rendezvous within the main task loop, the functions of the task may not be performed.

6.3.2 Normal Termination

guideline
• Do not create non-terminating tasks unintentionally.

• Explicitly shut down tasks dependent on library packages.

* Use a select statement rather than an accept statement alone.

* Provide a terminate alternative for e selective wait that does not require an else part or a delay.

example
This task will never terminate:

task body MESSAGE_BUFFER is

begin -- MESSAGEBUFFER
loop

select -- Circular buffer not empty
when (HEAD /= TAIL) =>

accept RETRIEVE (...);

or -- Circular buffer not full
when not (((HEAD = LOWER_BOUND) and then

(TAIL = UPPERBOUND)) or else
((HEAD/= LOWER_BOUND) and then
(TAIL = BUFFER'RANGE'PRED (HEAD)))) =>

accept STORE (
end select;

end loop;
end MESSAGE-BUFFER;

rationale
A nonterminating task is a task whose body consists of a nonterminating loop with no selective wait with
terminate, or a task that is dependent on a library package. Execution of a subprogram or block
containing a task cannot complete until the task terminates. Any task that calls a subprogram containing
a nonterminating task will be delayed indefinitely.

The effect of unterminated tasks at the end of program execution is undefined. A task dependent on a
library package cannot be forced to terminate using a selective wait construct with terminate alternative
and should be terminated explicitly during program shutdown. One way to terminate tasks dependent on
library packages is to provide them with exit entries. Have the main subprogram call the exit entry just
before it terminates.

Execution of an accept statement or of a selective wait statement without an else part, a delay. or a
terminate alternative cannot proceed if no task ever calls the entry(s) associated with that statement.
This could result in deadlock. Following this guideline entails programming multiple termination points

102 Ada QUALITY AND STYLE

in the task body. A reader can easily "know where to look" for the normal termination points in a task
body. The termination points are the end of the body's sequence of statements, and alternatives of
select statements.

exceptions

If you are simulating a cyclic executive, you may need a scheduling task that does not terminate. It has
been said that no real-time system should be programmed to terminate. This is extreme. Systematic
shutdown of many real-time systems is a desirable safety feature.

If you are considering programming a task not to terminate, be certain that it is not a dependent of a
block or subprogram from which the task's caller(s) will ever expect to return. Since entire programs
can be candidates for reuse (see Chapter 8), note that the task (and whatever it depends upon) will not
terminate. Also be certain that for any other task that you do wish to terminate, its termination does not
await this task's termination. Reread and fully understand the (Ada Reference Manual 1983, § 9.4) on
"Task Dependence - Termination of Tasks."

6.3.3 The Abort Statement

guideline

Avoid using the abort statement.

example

If required in the application, provide a task entry for orderly shutdown.

rationale

When an abort statement is executed, there is no way to know what the targeted task was doing
beforehand. Data for which the target task is responsible may be left in an inconsistent state. The overall
effect on the system of aborting a task in such an uncontrolled way requires careful analysis.

Tasks are not aborted until they reach a synchronization point such as beginning or end of elaboration,
delay, and accept statement or an entry call, selective wait, task allocation, or execution of an exception
handler. Consequently, the abort statement may not release processor resources as soon as you may
expect. It also may not stop a runaway task because the task may be executing an infinite loop
containing no synchronization points.

6.3.4 Abnormal Termination

guideline

* Place an exception handler for others at the end of a task body.

* Have each exception handler at the end of a task body report the task's demise.

example

This is one of many tasks updating the positions of blips on a radar screen. When started, it is given part
of the name by which its parent knows it. Should it terminate due to an exception, it signals the fact in
one of its parent's data structures.

CONCURRENCY 103

task body TRACK is
MYINDEX : TRACKS := NEUTRAL;

begin -- TRACK
select

accept START (WHOAMI : TRACKS) do
MYINDEX := WHOAMI;

end START;
or

TERMINATE:
end select;

exception
when others =>

if MYINDEX /= NEUTRAL then
STATION (MYINDEX).STATUS DEAD;

end if;
end TRACK;

rationale

A task will terminate if an exception is raised within it for which it has no handler. In such a case, the
exception is not propagated outside of the task (unless it occurs during a rendezvous). The task simply
dies with no notification to other tasks in the program. Therefore, providing exception handlers within
the task, and especially a handler for others, ensures that a task can regain control after an exception
occurs. If the task cannot proceed normally after handling an exception, this at least affords it the
opportunity to notify other tasks of its demise and to shut itself down cleanly.

6.4 SUMMARY

tasking
" Use tasks to model asynchronous entities within the problem domain.

* Use tasks to control or synchronize access to tasks or devices.

" Use tasks to define concurrent algorithms.

• Use tasks to perform cyclic or prioritized activities.

" Use anonymous task types for single instances.

• Use caution with dynamically allocated task objects.

• Avoid referencing terminated tasks through their aliases.

" Avoid disassociating a task from all names.

" Do not rely on pragma PRIORITY to perform precise scheduling.

• Do not depend on a particular delay being achievable.

" Do not use a busy waiting loop instead of a delay.

* Design to limit polling to those cases where absolutely necessary.

* Do not use knowledge of the execution pattern of tasks to achieve timing requirements.

communication

* Minimize the work performed during a rendezvous.

* Minimize the work performed in the selective wait loop of a task.

* Provide a handler for exception PROGRAMERROR wherever there is no else in a selective wait
statement.

* Make systematic use of handlers for TASKING_ERROR.

* Be prepared to handle exceptions during a rendezvous.

* Do not depend on the values of the task attributes 'CALLABLE or TERMINATED.

104 Ada QUALITY AND STYLE

• Do not depend on attributes to avoid TASKINGERROR on an entry call.

• Do not depend on the value of the entry attribute 'COUNT.

* Use the rendezvous mechanism, not shared variables, to pass data between tasks.

* Do not use shared variables as a task synchronization device.

* Use caution with conditional entry calls.

" Use caution with selective waits with else parts.

• Do not depend upon a particular delay in timed entry calls.

" Do not depend upon a particular delay in selective waits with delay alternatives.

* Minimize the number of accept and select statements per task.

" Minimize the number of accept statements per entry.

• Minimize the number of statements within an accept.

termination

• Place an exception handler for rendezvous within main tasking loop.

* Do not create non-terminating tasks unintentionally.

* Explicitly shut down tasks dependent on library packages.

* Use a select statement rather than an accept statement alone.

* Provide a terminate alternative for e selective wait that does not require an else part or a delay.

* Avoid using the abort statement.

* Place an exception handler for others at the end of a task body.

* Have each exception handler at the end of a task body report the task's demise.

CHAPTER 7
Portability

The manner in which the Ada language has been defined and tightly controlled is intended to provide
considerable aid in the portability of Ada programs. In most programming languages, different dialects are
prevalent as vendors extend or dilute a language for various reasons such as conformance to a programming
environment or to a particular application domain. The Ada Compiler Validation Capability (ACVC) was
developed by the U.S. Department of Defense at the Ada Validation Facility, ASD/SIDL, Wright-Patterson
Air Force Base to ensure that implementors strictly adhered to the Ada standard. Although the ACVC
mechanism is very beneficial and does eliminate many portability problems that plague other languages,
there is a tendency for new Ada users to expect it to eliminate all portability problems; it definitely does not.
Certain areas of Ada are not covered by validation. The semantics of Ada leave certain details to the
implementor. The implementor's choices with respect to these details affect portability.

There are some general principles to enhancing portability exemplified by many of the guidelines in this
chapter. They are:

- Recognize those Ada constructs that may adversely impact portability.

- Avoid the use of these constructs where possible.

- Localize and encapsulate nonportable features of a program if their use is essential.

- Highlight the use of constructs that may cause portability problems.

These guidelines cannot be applied thoughtlessly. Many of them involve a detailed understanding of the Ada
model and its implementation. In many cases you will have to make carefully considered tradeoffs between
efficiency and portability. Reading this chapter should improve your insight into the issues involved.

The material in this chapter was largely acquired from three sources: the Ada Run Time Environment
Working Group (ARTEWG) Catalogue of Ada Run Time Implementation Dependencies (ARTEWG
1986); the Nissen and Wallis book on Portability and Style in Ada (Nissen and Wallis 1984); and a paper
written for the U.S. Air Force by SofTech on Ada Portability Guidelines (Pappas 1985). The last of these
sources (Pappas 1985) encompasses the other two and provides an in-depth explanation of the issues,
numerous examples, and techniques for minimizing portability problems. (Conti 1987) is a valuable
reference for understanding the latitude allowed for implementors of Ada and the criteria often used to
make decisions.

The purpose of this chapter is to provide a summary of portability issues in the guideline format of this book.
The chapter does not include all issues identified in the references, rather the most significant. For an
in-depth presentation, (see Pappas 1985). A few additional guidelines are presented here and others are
elaborated upon where the authors' experience is applicable. For further reading on Ada I/O portability
issues, see (Matthews 1987). None of its suggestions were included herein, but it may be of interest.

The goal of this chapter is to aid you in writing portable Ada code. There are fewer exceptions provided for
the guidelines because many of the guidelines are rules of thumb that have been used effectively in the past.

Some of the guidelines in this chapter cross reference and place stricter constrains on other guidelines in this
book. These constraints apply when portability is being emphasized.

105

106 Ada QUALITY AND STYLE

7.1 FUNDAMENTALS
This section introduces some generally applicable principles of writing portable Ada programs. It includes
guidelines about the assumptions you should make with respect to a number of Ada features and their
implementations, and guidelines about the use of other Ada features to ensure maximum portability.

7.1.1 Global Assumptions

guideline

Make considered assumptions about the support provided for the following on potential target
platforms:
- Number of bits available for type INTEGER.

- Number of decimal digits of precision available for floating point types.

- Number of bits available for fixed-point types.

- Number of characters per line of source text.
- Number of bits for universalinteger expressions.

- Number of seconds for the range of DURATION.

- Number of milliseconds for DURATION'SMALL.

instantiation

These are minimum values (or minimum precision in the case of DURATION'SMALL) that a project or
application might assume that an implementation provides. There is no guarantee that a given
implementation provides more than the minimum, so these would be treated by the project or
application as maximum values also.
- 16 bits available for type INTEGER.

- 6 decimal digits of precision available for floating point types.
- 32 bits available for fixed-point types.
- 72 characters per line of source text.

- 16 bits for universalinteger expressions.

- -88_400 .. 86_400 seconds (1 day) for the range of DURATION.

- 20 milliseconds for DURATION-SMALL.

rationale

Some assumptions must be made with respect to certain implementation dependent values. The exact
values assumed should cover the majority of the target equipment of interest. Choosing the lowest
common denominator for values improves portability.

note

Of the microcomputers currently available for incorporation within embedded systems, 16-bit and 32-bit
proccssors are prevalent. Although 4-bit and 8-bit machines are still available, their limited memory
addressing capabilities make them unsuited to support Ada programs of any size. Using current
representation schemes, 6 decimal digits of floating point accuracy implies a representation mantissa at
least 21 bits wide, leaving 11 bits for exponent and sign within a 32-bit representation. This correlates
with the data widths of floating point hardware currently available for the embedded systems market. A
32-bit minimum on fixed-point numbers correlates with the accuracy and storage requirements of
floating point numbers.
The 72-column limit on source lines in the example is an unfortunate hold-over from the days of
Hollerith punch cards with sequence numbers. There may still be machinery and software used in
manipulating source code that are bound to assumptions about this maximum line length. The 16-bit
example for universal_integer expressions matches that for INTEGER storage.

PORTABILITY 107

The values for the range and accuracy of values of the predefined type DURATION are the limits expressed
in the Ada Language Reference Manual (Department of Defense 1983, § 9.6). You should not expect
an implementation to provide a wider range or a finer granularity.

7.1.2 Actual Limits

guideline

0 Determine the actual properties and limits of the Ada implementation(s) you are using.

rationale

The Ada model may not match exactly with the underlying hardware, so some compromises may have
been made in the implementation. Check to see if they could affect your program. Particular
implementations may do "better" than the Ada model requires while some others may be just minimally
acceptable. Arithmetic is generally implemented with a precision higher than the storage capacity (this is
implied by the Ada type model for floating point). Different implementations may behave differently on
the same underlying hardware.

7.1.3 Comments

guideline*

* Use highlighting comments for each package, subprogram and task where any nonportable features
are present.

• For each nonportable feature employed, describe the expectations for that feature.

example

with SYSTEM;
package MEMORY_MAPPFD_IO is
-- WARNING - This package is implementation specific.

-- It uses absolute memory addresses to interface with the I/O system.
-- It assumes a particular printer's line length.
-- Change memory mapping and printer details when porting.

PRINTERLINELENGTH : constant := 132;
type DATA is array (1..PRINTER_LINE_LENGTH) of CHARACTER;
procedure WRITE_LINE (LINE : in DATA);

end MEMORYMAPPEDIO;
--- package

body MEMORYMAPPEDIO is

procedure WRITELINE (LINE : in DATA) is

BUFFER DATA;
for BUFFER use at SYSTEM.PHYSICALADDRESS (16#200#);

begin
-- perform output operation through specific memory locations.

end WRITELINE;
..

end MEMORYMAPPEDIO;

rationale

The explicit commentation of each breach of portability will raise its visibility and aid in the porting
process. A description of the non-portable feature's expectations covers the common case where vendor
documentation of the original implementation is not available to the person performing the porting
process.

7.1.4 Main Subprogram

guideline

• Avoid using any implementation features associated with the main subprogram (e.g., allowing
parameters to be passed).

108 Ada QUALITY AND STYLE

rationale

The Ada Language Reference Manual (Department of Defense 1983) places very few requirements on
the main subprogram assuming the simplest case will increase portability. That is, assume you may only
use a parameterless procedure as a main program. Some operating systems are capable of acquiring and
interpreting returned integer values near zero from a function, but many others cannot. Further, many
real-time, embedded systems will not be designed to terminate, so a function or a procedure having
parameters with modes out or in out will be inappropriate to such applications.

This leaves procedures with in parameters. Although some operating systems can pass parameters in to a
program as it starts, others cannot. Also, an implementation may not be able to perform type checking
on such parameters even if the surrounding environment is capable of providing them. Finally,
real-time, embedded applications may not have an "operator" initiating the program to supply the
parameters, in which case it would be more appropriate for the program to have been compiled with a
package containing the appropriate constant values or for the program to read the necessary values from
switch settings or a downloaded auxiliary file. In any case, the variation in surrounding initiating
environments is far too great to depend upon the kind of last-minute (program) parameterization
implied by (subprogram) parameters to the main subprogram.

7.1.5 Encapsulating Implementation Dependencies

guideline

" Encapsulate hardware and implementation dependencies in a package.

" Clearly indicate the objectives if machine or solution efficiency is the reason for hardware or
implementation dependent code.

" Develop specific bodies for specific applications to meet particular needs or constraints after
porting.

" Isolate interrupt receiving tasks into implementation dependent packages.

example

See Guideline 7.1.3.

rationale

Encapsulating hardware and implementation dependencies in a package allows the remainder of the
code to ignore them and thus to be fully portable. It also localizes the dependencies, making it clear
exactly which parts of the code may need to be changed when porting the program.

Some implementation-dependent features may be used to achieve particular performance or efficiency
objectives. Commenting these objectives ensures that the programmer can find an appropriate way to
achieve them when porting to a different implementation, or explicitly recognize that they cannot be
achieved.

Interrupt entries are implementation-dependent features that may not be supported (e.g., VAX Ada
uses pragmas to assign system traps to "normal" rendezvous). However, interrupt entries cannot be
avoided in most embedded real-time systems and it is reasonable to assume that they are supported by
an Ada implementation. The actual value for an interrupt is implementation-defined. Isolate it.

note

Ada can be used to write machine-dependent programs that take advantage of an implementation in a
manner consistent with the Ada model, but which make particular choices where Ada allows
implementation freedom. These machine dependencies should be treated in the same way as any other
implementation- dependent features of the code.

7.1.6 Incorrect Order Dependencies

guideline

* Avoid depending on the order in which certain constructs in Ada are evaluated (see Department of
Defense 1983, 1-17).

PORTABILITY 109

example

The following example intentionally violates some of our guidelines, including naming, use of nonlocal
variables, and side-effects. The important thing here is that the commented line depends on Y being
evaluated before SQUARE (Y).

X. Y : REAL;

function SQUARE (VALUE : in REAL) return REAL is
begin

Y := VALUE * VALUE;
return Y;

end SQUARE;

X := Y + SQUARE (Y); -- sum Y and its square; make Y contain square of

-- its former self; keep the sum in X.

rationale

An incorrect order dependency may arise whenever as stated in the Ada Language Reference Manual".
.specifies that different parts of a given construct are to be executed in some order that is not specified

by the language. The construct is incorrect if execution of these parts in a different order would have a
different effect" I (Department of Defense 1983, §1.6).

While an incorrect order dependency may not adversely effect the program on a certain
implementation, the code might not execute correctly when it is ported. Avoid incorrect order
dependencies, but also recognize that even an unintentional error of this kind could prohibit portability.

7.2 NUMERIC TYPES AND EXPRESSIONS
A great deal of care was taken with the design of the Ada features related to numeric computations to ensure
that the language could be used in embedded systems and mathematical applications where precision was
important. As far as possible, these features were made portable. However, there is an inevitable tradeoff
between maximally exploiting the available precision of numeric computation on a particular machine and
maximizing the portability of Ada numeric constructs. This means that these Ada features, particularly
numeric types and expressions, must be used with great care if full portability of the resulting program is to be
guaranteed.

7.2.1 Predefined Numeric Types
guideline

" Do not use the predefined numeric types in package STANDARD. Use range and digits declarations
and let the implementation do the derivation implicitly from the predefined types.

• For programs that require greater accuracy than that provided by the global assumptions, define a
package that declares a private type and operations as needed (see Pappas 1985) for a full
explanation and examples.

example

The second example below is not representable as a subrange of INTEGER on " machine with an 8-bit
word. The first example below allows a compiler to choose a multiword representation if necessary.

-- use

type DAY OF LEAPYEAR is range 1 .. 366;
-- rather than
type DAY OF LEAPYEAR is new INTEGER range 1 .. 366;

rationale

An implementor is free to define the range of the predefined numeric types. Porting code from an
implementation with greater accuracy to one of lesser is a time consuming and error-prone process.
Many of the errors are not reported until run-time.

This applies to more than just numerical computation. An easy-to-overlook instance of this problem
occurs if you neglect to use explicitly declared types for integer discrete ranges (array sizes, loop ranges.

110 Ada QUALITY AND STYLE

etc.) (see Guidelines 5.5.1 a--! 5.5.2). If you do not provide an explicit type when specifying index
constraints and other discret ranges, a predefined integer type is assumed.

exceptions

The private type and related operations approach can incur considerable overhead. Apply alternative
techniques (e.g., subtypes) to those portions of a program requiring greater efficiency.

7.2.2 Ada Model

guideline
0 Know the Ada model for floating point types and arithmetic.

rationale

Declarations of Ada floating point types give users control over both the representation and arithmetic
used in floating point operations. Portable properties of Ada programs are derived from the models for
floating point numbers of the subtype and the corresponding safe numbers. The relative spacing and
range of values in a type are determined by the declaration. Attributes can be used to specify the
transportable properties of an Ada floating point type.

7.2.3 Analysis
guideline

• Carefully analyze what accuracy and precision you really, need.

rationale

Floating point calculations are done with the equivalent of the implementation's predefined floating
point types. The effect of extra "guard" digits in internal computations can sometimes lower the number
of digits that must be specified in an Ada declaration. This may not be consistent over implementations
where the program is intended to be run. It may also lead to the false conclusion that the declared types
are sufficient for the accuracy required.

The numeric type declarations should be chosen to satisfy the lowest precision (smallest number of
digits) that will provide the required accuracy. Careful analysis will be necessary to show that the
declarations are adequate.

7.2.4 Accuracy Constraints

guideline

0 Do not press the accuracy limits of the machine(s).

rationale

The Ada floating point model is intended to facilitate program portability, which is often at the expense
of efficiency in using the underlying machine arithmetic. Just because two different machines use the
same number of digits in the mantissa of a floating point number does not imply they will have the same
arithmetic properties. Some Ada implementations may give slightly better accuracy than required by
Ada because they make efficient use of the machine. Do not write programs that depend on this.

7.2.5 Comments
guideline

0 Comment the analysis and derivation of the numerical aspects of a program.

rationale

Decisions and background about why certain precisions are required in a program are important to
program revision or porting. The underlying numerical analysis leading to the program should be
commented.

PORTABILITY 111

7.2.6 Precision of Constants
guideline

0 Use named numbers or universal real expressions rather than constants of any particular type.

rationale
For a given radix (number base), there is a loss of accuracy for some rational and all irrational numbers
when represented by a finite sequence of digits. Ada has named numbers and expressions of type
universalreal that provide maximal accuracy of representation in the source program. These numbers
and expressions are converted to finite representations at compile time. By using universal real
expressions and numbers, the programmer can automatically delay the conversion to machine types
until the point where it can be done with the minimum loss of accuracy.

note
See also Guideline 3.2.5.

7.2.7 Appropriate Radix

guideline
* Represent literals in a radix appropriate to the problem.

example
type MAXIMUMSAMPLES is range i .. 1_000_000;
type LEGAL_HEX_ADDRESS is range 18#0000# .. 16#FFFF#;
type LEGAL_OCTAL_ADDRESS is range 8#000_000# .. 8#777_777#;

rationale
Ada provides a way of representing numbers using a radix other than ten. These numbers are called
based literals (Ada Reference Manual 1983, §2.4.2). The choice of radix determines whether the
representation of a radix fraction will terminate or repeat. This technique is appropriate when the
problem naturally uses some base other than ten for its numbers.

7.2.8 Subexpression Evaluation

guideline
* Anticipate values of subexpressions to avoid exceeding the range of their type. Use derived types,

subtypes, factoring, and range constraints on numeric types as described in Guidelines 3.4.1, 5.3. 1.
5.5.3, and 5.5.6.

rationale
The Ada language does not require that an implementation perform range checks on subexpressions
within an expression. Even if the implementation on your program's current target does not perform
these checks, your program may be ported to an implementation that does.

7.2.9 Relational Tests
guideline

0 Do relational tests with <= and >= rather than <, >, =, and 1=

rationale
Strict relational comparisons (<, >, =, /=) are a general problem in floating point computations.
Because of the way Ada comparisons are defined in terms of model intervals, it is possible for the values
of the Ada comparisons A < B and A = B to depend on the implementation, while A <= B evaluates
uniformly across implementations. Note that for floating point in Ada, "A <= B" is not the same as "not
(A > B)".

112 Ada QUALITY AND STYLE

7.2.10 Type Attributes

guideline
0 Use values of type attributes in comparisons and checking for small values.

example

The following examples test for (1) absolute "equality" in storage, (2) absolute "equality" in
computation, (3) relative "equality" in storage, and (4) relative "equality" in computation.

if abs (X - Y) <= FLOATTYPE'SMALL -- (1)
if abs (X - Y) <= FLOATTYPE'BASE'SMALL -- (2)
if abs (X - Y) <= abs X * FLOAT_TYPE'EPSILON -- (3)
if abs (X - Y) <= abs X * FLOATTYPE'BASE'EPSILON -- (4)

rationale

These attributes are the primary means of symbolically accessing the implementation of the Ada
numeric model. When the characteristics of the model numbers are accessed symbolically, the source
code is portable. The appropriate model numbers of any implementation will then be used by the
generated code.

7.2.11 -Testing Special Operands

guideline
* Test carefully around special values.

rationale

Tests around zero are particularly troublesome; for example, if x is any value mathematically in the
range -T'SMALL < X < T'SMALL, it is possible for either (and maybe both) of the Ada expressions x <=
o. o or x >= o.o to evaluate to TRUE.

7.3 STORAGE CONTROL
The management of dynamic storage can vary between Ada environments. In fact, some environments do
not provide any deallocation. The guidelines in this section encourage the programmer to bring dynamic
storage management under explicit program control to improve the portability of programs using it.

7.3.1 Collection Size for Access Types

guideline

* Use a representation clause to specify the collection size for access types. Specify the collection size
in general terms using the 'SIZE attribute of the object type.

example
type PERSONNEL_INFORMATION is
record
-- desired information

end PERSONNELINFORMATION;

type SUBJECTEMPLOYEE is access PERSONNELINFORMATION;

for SUBJECTEMPLOYEE'STORAGESIZE use
fNUMBER OFEMPLOYEES + SLACK)

* (PERSONNELINFORMATION'SIZE / SYSTEM.STORAGEUNIT);

rationale

There are many variations among implementations of dynamic storage algorithms. Here is a brief
summary of some of the issues:

- The processing time to acquire the storage and then later free it up (with possible garbage collection)
can vary greatly.

- The time at which overhead is incurred (e.g., obtaining a pool at type declaration time versus
individual objects when created versus seemingly random garbage collection) varies greatly.

PORTABILITY 113

- The total amount of space available to a given scope may be restricted.

- Dynamic storage pools, with Ada runtime implementations that employ them, may be shared among
unconstrained arrays, records with discriminants, and miscellaneous run-time data structures.

Given this degree of variability, it is advantageous to use a representation clause to specify the exact
requirements for a given type even though the representation clause is itself an
implementation-dependent feature.

note

The amount of storage specified using the representation clause need not be static.

Some implementations give you a fewer number of objects than requested, due to allocation scheme
overhead. Be certain to provide allowance for this possibility.

7.3.2 Task Storage
guideline

0 Use a representation clause to identify the expected stack space requirements for each task.

rationale

Implementations may vary greatly in the manner in which task stack space is obtained. The varying
methods may affect performance or access type storage allocation (when stack space is obtained from
heaps).

Even though a representation clause is an optional and implementation dependent feature (in the worst
case it will be ignored), it provides a mechanism for control of dynamic memory allocation with respect
to task activation.

7.4 TASKING

The definition of tasking in the Ada language leaves many characteristics of the tasking model up to the
implementor. This allows a vendor to make appropriate tradeoffs for the intended application domain, but it
also diminishes the portability of designs and code employing the tasking features. In some respects this
diminished portability is an inherent characteristic of concurrency approaches (see Nissen and Wallis 1984.
37).

A discussion of Ada tasking dependencies when employed in a distributed target environment is beyond the
scope of this book. For example, multi-processor task scheduling, interprocessor rendezvous, and the
distributed sense of time through package CALENDAR are all subject to differences between implementations.
For more information, (Nissen and Wallis 1984 and ARTEWG 1986) touch on these issues and (Volz et al.
1985) is one of many research articles available.

7.4.1 Task Activation Order

guideline

* Do not depend on the orier in which task objects are activated when declared in the same
declarative list.

rationale

The order is left undefined in the Ada LRM (Ada Reference Manual 1983).

7.4.2 Delay Statements

guideline

" Do not depend on a particular delay being achievable (Nissen and Wallis 1984).

" Never use a busy waiting loop instead of a delay.

" Design to limit polling to those cases where it is absolutely necessary.

* Never use knowledge of the execution pattern of tasks to achieve timing requirements.

114 Ada QUALITY AND STYLE

rationale

The rationale for this appears in Guideline 6.1.5. In addition, the treatment of delay statements varies
from implementation to implementation thereby hindering portability.

7.4.3 Package CALENDAR, Type DURATION, and SYSTEM.TICK

guideline

* Do not assume a correlation between SYSTEU.TICK and package CALENDAR or type DURATION (see
Guideline t. 1.5).

rationale

Such a correlation is not required, although it may exist in some implementations.

7.4.4 Select Statement Evaluation Order

guideline
* Do not depend on the order in which guard conditions are evaluated or on the algorithm for

choosing among several open select alternatives.

rationale
The language does not define the order of these conditions, 'j assume that they are arbitrary.

7.4.5 Task Scheduling Algorithm

guideline
" Do not assume that tasks execute uninterrupted until they reach a synchronization point.

• Use pragma PRIORITY tO distinguish general levels of importance only (see Guideline 6.1.4).

rationale
The Ada tasking model requires that tasks be synchronized only through the explicit means provided in
the language (i.e., rendezvous, task dependence, pragma SHARED). The scheduling algorithm is not
defined by the language and may vary from time sliced to preemptive priority. Some implementations
(e.g., VAX Ada) provide several choices that a user may select for the application.

note

The number of priorities may vary between implementations. In addition, the manner in which tasks of
the same priority are handled may vary between implementations even if the implementations use the
same general scheduling algorithm.

exceptions
In real-time systems it is often necessary to tightly control the tasking algorithm to obtain the required
performance. For example, avionics systems are frequently driven by cyclic events with limited
asynchronous interruptions. A nonpreemptive tasking model is traditionally used to obtain the greatest
performance in these applications. Cyclic executives can be programmed in Ada, as can a progression of
scheduling schemes from cyclic through multiple-frame-rate to full asynchrony (MacLaren 1980)
although an external clock is usually required.

7.4.6 Abort

guideline
• Avoid using the abort statement.

rationale
The rationale for this appears in Guideline 6.3.3. In addition, treatment of the abort statement varies
from implementation to implementation thereby hindering portability.

PORTABILITY 115

7.4.7 Shared Variables and Pragma SHARED
guideline

* Do not share variables.
" Have tasks communicate through the rendezvous mechanism.
• Do not use shared variables as a task synchronization device.
• Use pragma SHARED only when you are forced to by run time system deficiencies.

rationale
The rationale for this appears in Guideline 6.2.4. In addition, the treatment of shared variables varies
from implementation to implementation thereby hindering portability.

7.5 EXCEPTIONS
Care must be exercised using predefined exceptions as aspects of their treatment may vary between
implementations. Implementation-defined exceptions must, of course, be avoided.

7.5.1 Predefined Exceptions
guideline

• Do not depend on the exact locations at which predefined exceptions are raised.

rationale
The Ada Language Reference Manual (Department of Defense 1983) states that among
implementations, a predefined exception for the same cause may be raised from different locations.
You will not be able to discriminate between the exceptions. Further, each of the predefined exceptions
is associated with a variety of conditions. Any exception handler written for a predefined exception must
be prepared to deal with any of these conditions.

7.5.2 CONSTRAINTERROR and NUMERICERROR
guideline

0 Program with the possibility of CONSTRAINT-ERROR as well as NUMERIC_ERROR.

rationale
Either of these exceptions may be raised (and different implementations may raise either one under
otherwise similar circumstances). Exception handlers should be prepared to handle either.

7.5.3 Implementation-Defined Exceptions
guideline

• Do not raise implementation-defined exceptions.

rationale
No exception defined by an implementation can be guaranteed to be portable to other implementations
whether or not they are from the same vendor. Not only may the names be different, but the range of
conditions triggering the exceptions may be different also.

exceptions
If you create interface packages for the implementation-specific portions of your program, you can have
those packages "export" the implementation-defined exceptions, or better, define user exceptions.
Keep the names you use for these general. Do not allow yourself to be forced to find and change the
name of every handler you have written for these exceptions when the program is ported.

116 Ada QUALITY AND STYLE

7.6 REPRESENTATION CLAUSES AND IMPLEMENTATION-
DEPENDENT FEATURES

Ada provides many implementation-dependent features that permit greater control over and interaction
with the underlying hardware architecture than is normally provided by a high-order language. These
mechanisms are intended to assist in systems programming and real-time programming to obtain greater
efficiency (e.g., specific size layout of variables through representation clauses) and direct hardware
interaction (e.g., interrupt entries) without having to resort to assembly level programming.

Given the objectives for these features, it is not surprising that you must usually pay a significant price in
portability to use them. In general, where portability is the main objective, do not use these features. When
you must use these features, encapsulate them in packages well-commented as interfacing to the particular
target environment. This section identifies the various features and their recommended use with respect to
portability.

7.6.1 Representation Clauses

guideline

0 Isolate the use of representation clauses.

rationale
The Ada LRM (Ada Reference Manual 1983) does not require that these clauses be supported for all
types. Therefore, isolating representation clauses will minimize the impact of any changes necessitated
by a port.

exceptions
The two exceptions to this guideline are for task storage size and access collection size, where portability
may be enhanced through their use (see Guidelines 7.3.1 and 7.3.2).

7.6.2 Package SYSTEM

guideline
* Avoid using package SYSTEM constants except in attempting to generalize other machine dependent

constructs.

rationale
Since the values in this package are implementation-provided, unexpected effects can result from their
use.

exceptions
Do use package SYSTEM constants to parameterize other implementation-dependent features (see
[Pappas 1985] examples for numeric ranges [§13.7.1] and access collection size [§4.8]).

7.6.3 Machine Code Inserts

guideline
• Avoid machine code inserts.

rationale
There is no requirement that this feature be implemented. It is possible that two different vendors'
syntax will differ for an identical target and certainly, differences in lower-level details such as register
conventions will hinder portability.

exceptions
If machine code inserts must be used to meet another project requirement, recognize the portability
decreasing effects and isolate and highlight their use.

In the commentary include that a machine code insert is being used, what function the insert provides,
and (especially) why the insert is necessary. Comment the necessity of using machine code inserts by
delineating what went wrong with attempts to use other higher-level constructs.

PORTABILITY 117

7.6.4 Interfacing Foreign Languages
guideline

" Avoid interfacing Ada with other languages.

" Isolate all subprograms employing pragma INTERFACE to an implementation-dependent (interface)
package.

rationale
The problems with employing pragma INTERFACE are complex. These problems include pragma syntax
differences, conventions for linking/binding Ada to other languages, and mapping Ada variables to
foreign language variables.

exceptions
It is often necessary to interact with other languages, if only an assembly language to reach certain
hardware features. In these cases, clearly comment the requirements and limitations of the interface
and pragma INTERFACE usage.

7.6.5 Implementation-Defined Pragmas and Attributes
guideline

* Avoid pragmas and attributes added by the implementor.

rationale
The Ada LRM (Ada Reference Manual 1983) permits an implementor to add pragmas and attributes to
exploit a particular hardware architecture or software environment. These are obviously even more
implementation-specific and therefore less portable than an implementor's interpretations of the
predefined pragmas and attributes.

exceptions
Some implementation-dependent features are gaining wide acceptance in the Ada community to help
alleviate inherent inefficiencies in some Ada features. A good example of this is the "fast interrupt"
mechanism that provides a minimal interrupt latency time in exchange for a restrictive tasking
environment. Ada community groups (e.g., SIGAda's ARTEWG) are attempting to standardize a
common mechanism and syntax to provide this capability. By being aware of industry trends when
specialized features must be used, you can take a more general approach that will help minimize the
porting job.

7.6.6 Unchecked Deallocation
guideline

0 Avoid dependence on UNCHECKEDDEALLOCATION (see Guideline 5.9.2).

rationale
The unchecked storage deallocation mechanism is one method for overriding the default time at which
allocated storage is reclaimed. The earliest default time is when an object is no longer accessible, e.g.,
when control leaves the scope where an access type was declared (the exact point after this time is
implementation- dependent). Any unchecked deallocation of storage performed prior to this may result
in an erroneous Ada program if an attempt is made to access the object.
This guideline is stronger than Guideline 5.9.2 because of the extreme dependence on the
implementation o: UNCHECKED_DEALLOCATION. Using it could cause considerable difficulty with portability.

exceptions
Using unchecked deallocation of storage can be beneficial in local control of highly iterative or recursive
algorithms where available storage may be exceeded. Be careful to avoid erroneous situations as
described above.

118 Ada QUALITY AND STYLE

7.6.7 Unchecked Conversion
guideline

0 Avoid using UNCHECKED_CONVERSION (see Guideline 5.9.1).

rationale
The unci,,cKed type conversion mechanism is, in effect, a means of bypassing the strong typing facilities
in Ada. An implementation is free to limit the types that may be matched and the results that occur
when object sizes differ.

exceptions
Unchecked type conversion is useful in implementation dependent parts of Ada programs (where lack
of portability is isolated) where low-level programming and foreign language interfacing is the objective.

7.6.8 Run Time Dependencies

guideline
* Avoid the direct invocation of or implicit dependence upon an underlying host operating system or

Ada run time support system.

rationale
Features of an implementation not specified in the Ada LRM (Ada Reference Manual 1983) will usually
differ between implementations. Specific implementation-dependent features are not likely to be
provided in other implementations. Even if a majority of vendors eventually provide similar features,
they are unlikely to have identical formulations. Indeed, different vendors may use the same
formulation for (semantically) entirely different features.

Try to avoid these when coding. Consider the consequences of including system calls in a program on a
host development system. If these calls are not flagged for removal and replacement, the program could
go through development and testing only to be unusable when moved to a target environment which
lacks the facilities provided by those system calls on the host.

exceptions
In real-time embedded systems, making calls to low-level support system facilities may often be
unavoidable. Isolate the uses of these facilities may often be unavoidable. Comment them as you would
machine code inserts (see Guideline 7.6.3); they are, in a sense, instructions for the virtual machine
provided by the support system. When isolating the uses of these features, provide an interface for the
rest of your program to use which can be ported through replacement of the interface's implementation.

7.6.9 System Partitioning

guideline
0 Minimize artificial partitioning of an Ada program to exploit specific architectures.

examples
Example architectures with small address spaces include many of the 16-bit architectures such as the
MIL-STD-1750A or Intel 8086/80186 (where only 128K bytes of the I to 2M bytes is directly
addressable) or the U.S. Navy AN/UYK-44 or AN/AYK-14 (where only 64K bytes of the 2 to 4M bytes
is directly addressable).

rationale
For applications whose size exceeds that of the direct address space of the target architecture, it is often
necessary for an Ada implementation to force a partitioning that is unnatural to the Ada style (e.g.,
limited use of context clauses and generic invocation).

exceptions
If a limited address space target must be used, performance considerations may force artificial
partitioning.

PORTABILITY 119

7.7 INPUT/OUTPUT
The I/O facilities in Ada are not a part of the syntactic definition of the language. The constructs in the
language have been used to define a set of packages for this purpose. These packages are not expected to
meet all the I/O needs of all applications, in particular embedded systems. They serve as a core subset that
may be used on straightforward data, and that can be used as examples of building I/O facilities upon the
low-level constructs provided by the language. Providing an I/O definition that could meet the requirements
of all applications and integrate with the many existing operating systems would result in unacceptable
implementation dependencies.
The types of portability problems encountered with I/O tend to be different for applications running with a
host operating system versus embedded targets where the Ada run-time is self-sufficient. Interacting with a
host operating system offers the added complexity of coexisting with the host file system structures (e.g.,
hierarchical directories), access methods (e.g., ISAM) and naming conventions (e.g., logical names and
aliases based on the current directory). The section on I/O in (ARTEWG 1986) provides some examples of
this type of dependency. Embedded applications have different dependencies that often tie them to the
low-level details of their hardware devices.

The major defense against these inherent implementation dependencies in I/O is to try to isolate their
functionality in any given application. The majority of the following guidelines are focused in this direction.

7.7.1 Implementation-Added Features
guideline

0 Avoid the use of additional I/O features provided by a particular vendor.

rationale

Vendor-added features are not likely to be provided by other implementations. Even if a majority of
vendors eventually provide similar additional features, they are unlikely to have identical formulations.
Indeed, different vendors may use the same formulation for (semantically) entirely different features.

exceptions

There are many types of applications that require the use of these features. Examples include:
multilingual systems that standardize on a vendor's file system, applications that are closely integrated
with vendor products (i.e., user interfaces), and embedded systems for performance reasons. Isolate
the use of these features into packages.

7.7.2 NAME and FORM Parameters

guideline

• Use constants and variables as symbolic actuals for the NAME and FORM parameters on the predefined
I/O packages. Declare and initialize them in an implementation dependency package.

rationale

The format and allowable values of these parameters on the predefined I/O packages can vary greatly
between implementations. Isolation of these values facilitates portability. Note that not specifying a FORM

string or using a null value does not guarantee portability since the implementation is free to specify
defaults.

note
It may he desirable to further abstract the I/O facilities by defining additional CREATE and OPEN

procedures that hide the visibility of the FORM parameter entirely see (Pappas 1985, 54-55).

7.7.3 File Closing

guideline
* Close all files explicitly.

120 Ada QUALITY AND STYLE

rationale

The Ada LRM (Ada Reference Manual 1983, §14.1) states, "The language does not define what
happens to external files after completion of the main program (in particular, if corresponding files have
not been closed)." The possibilities range from being closed in an anticipated manner to deletion.

The disposition of a closed temporary file may vary, perhaps affecting performance and space
availability (ARTEWG 1986).

7.7.4 1/0 on Access Types
guideline

0 Avoid performing 1/0 on access types.

rationale

The Ada LRM (Ada Reference Manual 1983) does not require that it be supported. When such a value
is written, it is placed out of reach of the implementation. Thus, it is out of reach of the
reliability-enhancing controls of strong type checking.

Consider the meaning of this operation. One possible implementation of the values of access types is
virtual addresses. If you write such a value, how can you expect another program to read that value and
make any sensible use of it? The value cannot be construed to refer to any meaningful location within
the reader's address space, nor can a reader infer any information about the writer's address space from
the value read. The latter is the same problem that the writer would have trying to interpret or use the
value if it is read back in. To wit, a garbage collection and/or heap compaction scheme may have moved
the item formerly accessed by that value, leaving that value "pointing" at space which is now being put to
indeterminable uses by the underlying implementation.

7.7.5 Package LOWLEVELI0

guideline
0 Minimize and isolate using the predefined package LOWLEVEL_IO.

rationale

LOWLEVEL_1O is intended to support direct interaction with physical devices that are usually unique to a
given host or target environment. In addition, the data types provided to the procedures are
implementation-defined. This allows vendors to define different interfaces to an identical device.

exceptions

Those portions of an application that must deal with this level of I/O, e.g., device drivers and real-time
components dealing with discretes, are inherently nonportable. Where performance allows, structure
these components to iolate the hardware interface. Only within these isolated portions is it
advantageous to emplo" the LOW_LEVELtO interface which is portable in concept and general procedural
interface, if not completely so in syntax and semantics.

7.8 SUMMARY
fundamentals

• Make considered assumptions about the support provided for the following on potential target
platforms:

• Determine the actual properties and limits of the Ada implementation(s) you are using.
• Use highlighting comments for each package, subprogram and task where any nonportable features

are present.

• For each nonportable feature employed, describe the expectations for that feature.

* Avoid using any implementation features associated with the main subprogram (e.g., allowing
parameters to be passed).

• Encapsulate hardware and implementation dependencies in a package.

PORTABILITY 121

* Clearly indicate the objectives if machine or solution efficiency is the reason for hardware or
implementation dependent code.

• Develop specific bodies for specific applications to meet particular needs or constraints after

porting.

* Isolate interrupt receiving tasks into implementation dependent packages.

* Avoid depending on the order in which certain constructs in Ada are evaluated.

numeric types and expressions

• Do not use the predefined numeric types in package STANDARD. Use range znd digits declarations
and let the implementation do the derivation implicitly from the predefined types.

" For programs that require greater accuracy than that provided by the global assumptions, define a
package that declares a private type and operations as needed.

* Know the Ada model for floating point types and arithmetic.

" Carefully analyze what accuracy and precision you really need.

" Do not press the accuracy limits of the machine(s).

" Comment the analysis and derivation of the numerical aspects of a program.

* Use named numbers or universal real expressions rather than constants of any particular type.

* Represent literals in a radix appropriate to the problem.

• Anticipate values of subexpressions to avoid exceeding the range of their type. Use derived types,
subtypes, factoring, and range constraints on numeric types as described in Guidelines 3.4.1, 5.3.1,
5.5.3. and 5.5.6.

• Do relational tests with <= and >= rather than <, >, =, and /=.

* Use values of type attributes in comparisons and checking for small values.

* Test carefully around special values.

storage control

• Use a representation clause to specify the collection size for access types. Specify the collection size
in general terms using the 'SIZE attribute of the object type.

• Use a representation clause to identify the expected stack space requirements for each task.

tasking

* Do not depend on the order in which task objects are activated when declared in the same
declarative list.

* Do not depend on a particular delay being achievable.

" Never use a busy waiting loop instead of a delay.

" Design to limit polling to those cases where it is absolutely necessary.

• Never use knowledge of the execution pattern of tasks to achieve timing requirements.

• Do not assume a correlation between SYSTEM.TICK and package CALENDAR or type DURATION (see
Guideline 6.1.5).

* Do not depend on the order in which guard conditions are evaluated or on the algorithm for
choosing among several open select alternatives.

• Do not assume that tasks execute uninterrupted until they reach a synchronization point.

" Use pragma PRIORITY to distinguish general levels of importance only (see Guideline 6.1.4).

• Avoid using the abort statement.

" Do not share variables.

• Have tasks communicate through the rendezvous mechanism.

• Do not use shared variables as a task synchronization device.

122 Ada QUALITY AND STYLE

* Use pragma SHARED only when you are forced to by run time system deficiencies.

exceptions

* Do not depend on the exact locations at which predefined exceptions are raised.

• Program with the possibility of CONSTRAINTERROR as well as NUMERICERROR.

* Do not raise implementation-defined exceptions.

representation clauses and implementation-dependent features

• Isolate the use of representation clauses.

• Avoid using of package SYSTEM constants except in attempting to generalize other machine
dependent constructs.

" Avoid machine code inserts.

" Avoid interfacing Ada with other languages.

* Isolate all subprograms employing pragma INTERFACE to an implementation-dependent (interface)
package.

* Avoid pragmas and attributes added by the implementor.

* Avoid dependence on UNCHECKEDDEALLOCATION (see Guideline 5.9.2).

* Avoid using UNCHECKED_CONVERSION (see Guideline 5.9.1).

* Avoid the direct invocation of or implicit dependence upon an underlying host operating system or
Ada run time support system.

* Minimize artificial partitioning of an Ada program to exploit specific architectures.

input/output

* Avoid the use of additional I/O features provided by a particular vendor.

* Use constants and variables as symbolic actuals for the NAME and FORM parameters on the predefined
I/O packages. Declare and initialize them in an implementation dependency package.

" Close all files explicitly.

" Avoid performing I/O on access types.

" Minimize and isolate using the predefined package LOW_LEVEL_I.

CHAPTER 8
Reusability

There are many issues involved in software reuse, including whether to reuse parts, how to store and retrieve
reusable parts in a library, how to certify parts, how to maximize the economic value of reuse, how to provide
incentives to engineers and entire companies to reuse parts rather than reinvent them, and so on. This
chapter ignores these managerial, economic, and logistic issues to focus on the single technical issue of how
to write software parts in Ada to increase reuse potential. The other issues are just as important but are
outside of the scope of this book.

One of the design goals of Ada was to facilitate the creation and use of reusable parts to improve
productivity. To this end, Ada provides features to develop reusable parts and to adapt them once they are
available. Packages, visibility control, and separate compilation support modularity and information hiding
(see Guidelines in Sections 4.1, 4.2, 5.3 and 5.7). This allows the separation of application-specific parts of
the code, maximizing the general purpose parts suitable for reuse, and allows the isolation of design
decisions within modules, facilitating change. The Ada type system supports localization of data definitio-
so that consistent changes are easy to make. Generic units directly support the development of gener..
purpose, adaptable code that can be instantiated to perform specific functions. Using these features
carefully, and in conformance to the guidelines in this book, produces code that is more likely to be
reusable.

The guidelines in this chapter are concerned with how to write reusable Ada code. The underlying
assumption is that reusable parts are rarely built in isolation and are hard to recover from code that was
developed without reuse in mind. The guidelines therefore focus on how to produce reusable parts as a
by-product of developing software for specific applications.

A reusable part must fulfill a number of different criteria. This chapter is organized around the following
criteria:

- Reusable parts must be understandable. A reusable part should be a model of clarity. The
requirements for commenting reusable parts are even more stringent than those for parts specific to
a particular application.

- Reusable parts must be of the highest possible quality. They must be correct, reliable, and robust.
An error or weakness in a reusable part may have far-reaching consequences, and it is important
that other programmers can have a high degree of confidence in any parts offered for reuse.

- Reusable parts must be adaptable. To maximize its reuse potential, a part must be able to adapt to
the needs of a wide variety of users.

- Reusable parts should be independent. It should be possible to reuse a single part without also
adopting many other parts that are apparently unrelated.

In addition to these criteria, a reusable part must be easier to reuse than to reinvent, must be efficient, and
must be portable. If it takes more effort to reuse a part than to create one from scratch, or if the reused part
is simply not efficient enough, reuse does not occur as readily. For guidelines on portability, see Chapter 7.

This chapter should not be read in isolation. In many respects, a well-written, reusable component is simply
an extreme example of a well-written component. All of the guidelines in the previous chapters apply to

123

124 Ada QUALITY AND STYLE

reusable components as well as components specific to a single application. The guidelines listed here apply
specifically to reusable components.

8.1 UNDERSTANDING AND CLARITY
It is particularly important that parts intended for reuse should be easy to understand. The following must be
immediately apparent from inspection of the comments and the code itself: what the part does, how to use it,
what anticipated changes might be made to it in the future, and how it works. For maximum readability of
reusable parts, follow the guidelines in Chapter 3, some of which are repeated more strongly below.

8.1.1 Application-Independent Naming

guideline

* Select the least restrictive names possible for reusable parts and their identifiers.

* Reserve the best name for a generic instantiation, using the second best for the generic unit itself.

• Use names which indicate the behavioral characteristics of the reusable part, as well as its
abstraction.

example

General-purpose stack abstraction:

generic
type ITEM is limited private;

package GENERIC_BOUNDEDSTACK is

procedure PUSH (..
procedure POP (.

end GENERICBOUNDEDSTACK;

Renamed appropriately for use in current application:

with GENERIC_BOUNDEDSTACK;
package CAFETERIA is

type TRAYS is ...
package TRAY_STACK is new GENERICBOUNDED_STACK (ITEM => TRAYS, ...

end CAFETERIA;

rationale

Choosing a general or application-independent name for a reusable part encourages its wide reuse.
When the part is used in a specific context, it can be instantiated (if generic) or renamed with a more
specific name.

When there is an obvious choice for the simplest, clearest name for a reusable part, it is a good idea to
leave that name for use by the reuser of the part, choosing a longer, more descriptive name for the
reusable part. Thus, GENERIC_BOUNDEDSTACK is a better name than STACK for a generic stack package
because it leaves the simpler name STACK available to be used by an instantiation.

Include indications of the behavioral characteristics (but not indications of the implementation) in the
name of a reusable part so that multiple parts with the same abstraction (e.g., multiple stack packages)
but with different restrictions (bounded, unbounded, etc.) can be stored in the same Ada library and
used as part of the same Ada program.

8.1.2 Abbreviations

guideline

* Do not use any abbreviations in identifier or unit names.

REUSABILITY 125

rationale
This is a stronger guideline than Guideline 3.1.4. However well commented, an abbreviation may cause
confusion in some future reuse context. Even universally accepted abbreviations, such as GMT for
Greenwich Mean Time, can cause problems and should be used only with great caution.

note
When reusing a part in a specific application, consider renaming the part using abbreviations standard to
that application.

8.2 ROBUSTNESS
The guidelines below improve the robustness of Ada code. It is easy to write code that depends on an
assumption which you do not realize that you are making. When such a part is reused in a different
environment, it can break unexpectedly. The guidelines below show some ways in which Ada code can be
made to automatically conform to its environment, and some ways in which it can be made to check for
violations of assumptions. Finally, some guidelines are given to warn you about errors which Ada does not
catch as soon as you might like.

8.2.1 Symbolic Constants
guideline

* Use symbolic constants and constant expressions to allow multiple dependencies to be linked to a
small number of symbols.

example

procedure DISK DRIVER is
--In this procedure, a number of important disk parameters are linked.
NUMBERSECTORS constant 4;
NUMBERTRACKS constant 200;
NUMBERSURFACES constant 18;
SECTOR CAPACITY constant 4096;
TRACK CAPACITY constant NUMBERSECTORS * SECTORCAPACITY;
SURFACE_CAPACITY constant NUMBERTRACKS * TRACKCAPACITY;
DISKCAPACITY constant NUMBERSURFACES * SURFACECAPACITY;

type SECTOR_RANGE is range 1 .. NUMBER_SECTORS;
type TRACK_RANGE is range 1 .. NUMBER_TRACKS;
type SURFACE_RANGE is range 1 .. NUMBER_SURFACES;

type TRACK_MAP is array (SECTORRANGE) of ...;
type SURFACE_MAP is array (TRACK_RANGE) of TRACKMAP;
type DISK_MAP is array (SURFACE_RANGE) of SURFACE_MAP;

begin

end DISKDRIVER;

rationale

To reuse software that uses symbolic constants and constant expressions appropriately, just one or a
small number of constants need to be reset and all declarations and associated code are changed
automatically. Apart from easing reuse, this reduces the number of opportunities for error ano
documents the meanings of the types and constants without using error-prone comments.

8.2.2 Unconstrained Arrays

guideline
" Use unconstrained array types for array formal parameters and array return values.

" Make the size of local variables depend on actual parame _: size where appropriate.

126 Ada QUALITY AND STYLE

example

type VECTOR is
array (VECTOR_INDEX range <>) of ELEMENT;

type MATRIX is
array (VECTOR_INDEX range <>, VECTOR_INDEX range <>) of ELEMENT;

procedure MATRIX_OPERATION (DATA : in MATRIX) is
WORKSPACE MATRIX (DATA'RANGE (1). DATA'RANGE (2));

TEMPVECTOR VECTO. (DATA'FIRST (1) .. 2 * DATA'LAST (1));

rationale

Unconstrained arrays can be declared with their sizes dependent on formal parameter sizes. When used
as local variables, their sizes change automatically with the supplied actual parameters. This facility can
be used to assist in the adaption of a part since necessary size changes in local variables are taken care of
automatically.

8.2.3 Assumptions

guideline

" Minimize the number of assumptions made by a unit.

" For assumptions which cannot be avoided, use types to automatically enforce conformance.

* For assumptions which cannot be automatically enforced by types, add explicit checks to the code.

• Document all assumptions.

example

The following poorly written function documents, but does not check, its assumption:

-- Assumption: BCD value is less than 4 digits.

function BINARYTOBCD (BINARYVALUE : in NATURAL) return ... is
begin

end BINARYTOBCD;

The next example documents and explicitly checks its assumption:

-- Exceptions: OUTOFRANGE raised when BCD value exceeds 4 digits.

function BINARYTOBCD (BINARYVALUE : in NATURAL) return ... is
MAXREPRESENTABLE : constant NATURAL := 999;

begin

if BINARYVALUE > MAXREPRESENTABLE then
raise OUTOFRANGF;

end if;

end BINARYTOBCD;

The last example enforces conformance with its assumption, making the checking automatic, and the
comment unnecessary:

type BINARYVALUES is new NATURAL range 0 .. 999;

function BINARYTOBCD (BINARYVALUE : in BINARYVALUES) return ... is
begin

end BINARYTOBCD:

rationale

Any part that is intended to be used again in another program, especially if the other program is likely to
be written hy other people, should be robust. It should defend itself against misuse by defining its

REUSABILITY 127

interface to enforce as many assumptions as possible and by adding explicit defensive checks on
anything which cannot be enforced by the interface.

note

You can restrict the ranges of values of the inputs by careful selection or construction of the types of the
formal parameters. When you do so, the compiler-generated checking code may be more efficient than
any checks you might write. Indeed, such checking is part of the intent of the strong typing in the
language. This presents a challenge, however, for generic units where the user of your code selects the
types of the parameters. Your code must be constructed so as to deal with any value of any type the user
may choose to select for an instantiation.

8.2.4 Subtypes in Generic Specifications
guideline

" Beware of using subtypes as type marks when declaring generic formal objects of type in out.

• Beware of using subtypes as type marks when declaring parameters or return values of generic
formal subprograms.

" Use symbolic expressions of attributes rather than literal values in reference to generic formal
objects, and parameter and return values of generic formal subprograms.

example
In the following example, it appears that any value supplied for the generic formal object OBJECT would
be constrained to the range 1. . lo. It also appears that parameters passed at run-time to the PUT routine
in any instantiation, and values returned by the GET routine, would be similarly constrained.

subtype RANGE_1_10 is integer range 1 .. 10;

generic
OBJECT : in out RANGE1_10;
with procedure PUT (PARAMETER : in RANGE_1_10)
with function GET return RANGE_1_10;

package INPUT_OUTPUT is

end INPUTOUTPUT;

However, this is not the case. Given the following legal instantiation:
subtype RANGE_15_30 is integer range 15 .. 30:
CONSTRAINEDOBJECT : RANGE_15_30 := 15;

procedure CONSTRAINED_PUT (PARAMETER : in RANGE_ 15_30);

function CONSTRAINEDGET return RANGE_15_30;

package CONSTRAINED_INPUT_OUTPUT is
new INPUTOUTPUT (OBJECT => CONSTRAINEDOBJECT,

PUT => CONSTRAINEDPUT,
GET => CONSTRAINED_GET);

OBJECT, PARAMETER, and the return value of GET are constrained to the range 15. .30. Thus, for example, if
the body of the generic package contains an assignment statement:

OBJECT := 1;

CONSTRAINTERROR is raised when this instantiation is executed.

rationale
According to sections 12.1.1(5) and 12.1.3(5) of the Ada Language Reference Manual (Department of
Defense 1983), when constraint checking is performed for generic formal objects, and parameters and
return values of generic formal subprograms, the constraints of the actual subtype (not the formal
subtype or the base type) are enforced.

Thus, even with a generic unit which has been instantiated and tested many times, and with an
instantiation which reported no errors at instantiation time, there can be a run-time error. Since the
subtype constraints of the generic formal are ignored, the Ada Language Reference Manual

128 Ada QUALITY AND STYLE

(Department of Defense 1983) suggests using the name of a base type in such places to avoid confusion.
Even so, you must be careful not to assume the freedom to use any value of the base type because the
instantiation imposes the subtype constraints of the generic actual parameter. To be safe, always refer to
specific values of the type via symbolic expressions containing attributes like 'FIRST, 'LAST, 'PRED, and
'succ rather than via literal values.

The best solution is to introduce a new generic formal type parameter and use it in place of the subtype,
as shown below:

generic
type OBJECTS is range
OBJECT : in out OBJECTS;
with procedure PUT (PARAMETER : in OBJECTS);
with function GET return OBJECTS;

package INPUTOUTPUT is

end INPUTOUTPUT;

This is a clear statement by the developer of the generic unit that no assumptions are made about the
OBJECTS type other than that it is an integer type. This should reduce the likelihood of any invalid
assumptions being made in the body of the generic unit.

8.2.5 Overloading in Generic Units
guideline

0 Be careful about overloading the names of subprograms exported by the same generic package.

example

generic
type ITEMS is limited private;

package INPUTOUTPUT is
procedure PUT (ITEM in INTEGER);
procedure PUT (ITEM in ITEMS);

end INPUTOUTPUT;

rationale

If the generic package shown in the example above is instantiated with INTEGER (or any subtype of
INTEGER) as the actual type corresponding to generic formal ITEM, then the two PUT procedures have
identical interfaces, and all calls to PUT are ambiguous. Therefore, this package cannot be used with type
INTEGER. In such a case, it is better to give unambiguous names to all subprograms. See section 12.3(22)
of the Ada Language Reference Manual (Department of Defense 1983) for more information.

8.2.6 Hidden Tasks
guideline

• Document which generic formal parameters are accessed from a task hidden inside the generic unit.

rationale

Concurrent access to data structures must be carefully planned to avoid errors, especially for data
structures which are not atomic (see Chapter 6 for details). If a generic unit accesses one of its generic
formal parameters (reads or writes the value of a generic formal object or calls a generic formal
subprogram which reads or writes data) from within a task contained in the generic unit, then there is
the possibility of concurrent access for which the user may not have planned. In such a case, the user
should be warned by a comment in the generic specification.

REUSABILITY 129

8.2.7 Exceptions
guideline

" Propagate exceptions out of reusable parts. Handle exceptions within reusable parts only when you
are certain that the handling is appropriate in all circumstances.

• Always propagate exceptions raised by generic formal subprograms, after performing any cleanup
necessary to the correct operation of future invocations of the generic instantiation.

* Always leave state variables unmodified when raising an exception.

• Always leave par; -neters unmodified when raising an exception.

example

generic
type NUMBERS is limited private;
with procedure GET (NUMBER : out NUMBERS);

procedure PROCESSNUMBERS;

procedure PROCESS_NUMBERS is
NUMBER : NUMBERS;

begin

begin
GET (NUMBER);

exception
when others =>

PERFORMCLEANUPNECESSARYFORPROCESSNUMBERS;
raise;

end;

end PROCESS_NUMBERS;

rationale

On most occasions, an exception is raised because an undesired event (such as floating-point overflow)
has occurred. Such events often need to be dealt with entirely differently with different uses of a
particular software part. It is very difficult to anticipate all the ways that users of the part may wish to
have the exceptions handled. Passing the exception out of the part is the safest treatment.

In particular, when an exception is raised by a generic formal subprogram, the generic unit is in no
position to understand why or to know what corrective action to take. Therefore, such exceptions
should always be propagated back to the caller of the generic instantiation. However, the generic unit
must first clean up after itself, restoring its internal data structures to a correct state so that future calls
may be made to it after the caller has dealt with the current exception. For this reason, all calls to
generic formal subprograms should be within the scope of a when others exception handler if the
internal state is modified, as shown in the example above.
When a reusable part is invoked, the user of the part should be able to know exactly what operation (at
the appropriate level of abstraction) has been performed. For this to be possible, a reusable part must
always do all or none of its specified function; it must never do half. Therefore, any reusable part which
terminates early by raising or propagating an exception should return to the caller with no effect on the
internal or external state. The easiest way to do this is to test for all possible exceptional conditions
before making any state changes (modifying internal state variables, making calls to other reusable parts
to modify their states, updating files, etc.). When this is not possible, it is best to restore all internal and
external states to the values which were current when the part was invoked before raising or propagating
the exception. When even this is not possible, it is important to document this poten, hazardous
situation in the comment header of the specification of the part.

A similar problem arises with parameters of mode out or in out when exceptions are raised. The Ada
language defines these modes in terms of "copy-in" and "copy-back" semantics. but leaves the actual
parameter-passing mechanism undefined. When an exception is raised, the copy-back does not occur,
but for an Ada compiler which passes parameters by reference, the actual parameter has already been
updated. When parameters are passed by copy, the update does not occur. To reduce ambiguity,
increase portability, and avoid situations where some but not all of the actual parameters are updated

130 Ada QUALITY AND STYLE

when an exception is raised, it is best to treat values of out and in out parameters like state variables,
updating them only after it is certain that no exception will be raised.

8.3 ADAPTABILITY

Reusable parts often need to be changed before they can be used in a specific application. They should
therefore be structured so that change is easy and as localized as possible. One way of achieving adaptability
is to create general parts with comple- functionality, only a subset of which might be needed in a given
application. Another is to use Ada generic construct to produce parts which can be appropriately
instantiated with different parameters. Both of these approaches avoid the error-prone process of adapting a
part by changing its code, but have limitations and can carry some overhead.

Anticipated changes, that is, changes that can be reasonably foreseen by the developer of the part, should be
provided for as far as possible. Unanticipated change can only be accommodated by carefully structuring a
part to be adaptable. Many of the considerations pertaining to maintainability apply. If the code is of high
quality, clear, and conforms to well-established design principles such as information hiding, it is easier to
adapt in unforeseen ways.

8.3.1 Complete Functionality

guideline

Provide complete functionality in a reusable part or set of parts. Build in complete functionality,
including end conditions, even if some functionality is not needed in this application.

example

INITIALIZE_QUEUE (. -- initialization operation
if STACK FULL (..) -- probing operation
SYMBOLTABLE.CLOSEFRAME (...); -- finalization operation

rationale

This is particularly important in designing/programming an abstraction. Completeness ensures that you
have configured the abstraction correctly, without built-in assumptions about its execution environment.
It also ensures the proper separation of functions so that they are useful to the current application and,
in other combinations, to other applications. It is particularly important that they be available to other
applications; remember that they can be "optimized" out of the final version of the current product.

note

The example illustrates end condition functions. An abstraction should be automatically initialized
before its user gets a chance to damage it. When that is not possible, it should be supplied with
initialization operations. In any case, it needs finalization operations, both explicit and
default/automatic. Where possible, probing operations should be provided to determine when limits are
about to be exceeded, so that the user can avoid causing exceptions to be raised.

It is also useful to provide reset operations for many objects. To see that a reset and an initiation can be
different, consider the analogous situation of a "warm boot" and a "cold boot" on a personal computer.

Even if all of these operations are not appropriate for the abstraction, the exercise of considering them
aids in formulating a complete set of operations, others of which may be used by another application.

Some implementations of the language link all subprograms of a package into the executable file.
ignoring whether they are used or not, making unused operations a liability (see Guideline 8.4.4). In
such cases, where the overhead is significant, create a copy of the fully functional part and comment out
the unused operations with an indication that they are redundant in this application.

8.3.2 Generic Units

guideline

* Use generic units to avoid code duplication.

" Parameterize generic units for maximum adaptability.

" Reuse common instantiations of generic units, as well as the generic units themselves.

REUSABILITY 131

rationale
Ada does not allow subprograms or data types to be passed as actual parameters to subprograms during
execution. Such parameters must be specified as generic formal parameters to a generic unit when it is
instantiated. Therefore, if you want to write a subprogram for which there is variation from call to call in
the data type of objects on which it operates, or in the subprogram which it calls, then you must write the
subprogram as a generic unit and instantiate it once for each combination of data type and subprogram
parameters. The instantations of the unit can then be called as regular subprograms.

If you find yourself writing two very similar routines differing only in the data type they operate on or the
subprograms they call, then it is probably better to write the routine once as a generic unit and instantiate
it twice to get the two versions you need. When the need arises later to modify the two routines, the
change only needs to be made in one place. This greatly facilitates maintenance.

Once you have made such a choice, consider other aspects of the routine that these two instances may
have in common but which are not essential to the nature of the routine. Factor these out as generic
formal parameters. When the need arises later for a third similar routine, it can be automatically
produced by a third instantiation, if you have foreseen all the differences between it and the other two.
A parameterized generic unit can be very reusable.

It may seem that the effort involved in writing generic rather than nongeneric units is substantial.
However, making units generic is not much more difficult or time-consuming than making them
nongeneric once you become familiar with the generic facilities. It is, for the most part, a matter of
practice. Also, any effort put into the development of the unit will be recouped when the unit is reused,
as it surely will be if it is placed in a reuse library with sufficient visibility. Do not limit your thinking about
potential reuse to the application you are working on or to other applications with which you are very
familiar. Applications with which you are not familiar or future applications might be able to reuse your
software.
After writing a generic unit and placing it in your reuse library, the first thing you are likely to do is to
instantiate it once for your particular needs. At this time, it is a good idea to consider whether there are
instantiations which are very likely to be widely used. If so, place each such instantiation in your reuse
library so that they car. be found and shared by others.

8.3.3 Using Generic Units to Encapsulate Algorithms
guideline

0 Use generic units to encapsulate algorithms independently of data type.

example

This is the specification of a generic sort procedure:

generic
type ELEMENT is limited private;
type DATA is array (POSITIVE range <>) of ELEMENT;
with function "<" (LEFT, RIGHT : in ELEMENT) return BOOLEAN is <>;
with procedure SWAP (LEFT, RIGHT : in out ELEMENT) is <>;

procedure GENERIC_SORT (DATATOSORT : in out DATA);

The generic body looks just like a regular procedure body and can make full use of the generic formal
parameters in implementing the sort algorithm:

procedure GENERIC_SORT (DATATOSORT : in out DATA) is
begin

for I in DATATO SORT'range loop

if DATA TO SORT (I) < DATATOSORT (J) then
SWAP (DATATOSORT (I), (DATA TOSORT (J));

end if;

end loop;

end GENERICSORT;

132 Ada QUALITY AND STYLE

The generic procedure can be instantleted as:
type INTEGER_A'AY is array (1..130) of INTEGER;

procedure SORT is
new GENERICSOR7 'ELEMENY => INTEGER. DATA => INTEGE J ,RRAY);

or

type STRING_86 is STRING (1. .80);
type STRING_ARRAY is array (1..100) of STRING_80;
...

procedure SORT is
new GENERICSORT (ELEMENT => STRING_80 CATA => STRINGARRAY);

...

and called as:
INTEGERARRAY_1 : INTEGERARRAY;

SORT (INTEGERARRAY_1);

or

STRINGARRAYI : STRINGARRAY;

SORT (SiRING_ARRAY_1);

rationale

A sort algorithm can be described independently of the data type being sorted. This generic procedure
takes the ELEMENT data type as a generic li1.. Ited private type parameter so that it assumes as little as
possible about the data type of the objects actually being operated on. It also takes DATA as a generic
formal parameter sa thit instantiatio- can have entire arrays passed to them for sorting. Finally, it
explicitly requires t-.e two operators that it needs -o do the sort: comparison and swap.The sort algorithm
is encapsulated without reference to sny data type, The generic can be instantiated to sort an array of
any data type.

8.3.4 Using Generic Units for Abstract Pata Types
guideline

* Use abstract data types in preference to abstract data objects.

* Use generic units to implement abstract data types independently of their component data type.

example

This example presents a series of different techniques which can be used to generate abstract data t' ,es
and objects. A discussion of the merits of each follows in the rationale section below. The first is an
abstract data object (ADO), also known as an abstract state machine (ASM). It encapsulates one stack
of integers.

package BOUNDED_STACK is
subtype ELEMENTS is INTEGER;
MAXSTACKSIZE : constant := 100;
procedure PUSH (ELEMENT in ELEMENTS);
procedure POP (ELEMENT out ELEMENTS);
OVERFLOW exception;
UNDERFLOW exception:

end BOUNDEDSTACK;

The second is an abstract data type (ADT). It differs from the ADO by exporting the STACKS type, which
allows the user to declare any number of stacks of integers. Note that since multiple stacks may now
exist, it is necessary to specify a STACK argument on calls to PUSH and Pop.

REUSABILITY 133

package BOUNDED_STACK is
subtype ELEMENTS is INTEGER;

type STACKS is limited private;
MAXSTACKSIZE : constant := 100;
procedure PUSH (STACK in out STACKS; ELEMENT in ELEMENTS);
procedure POP (STACK in out STACKS; ELEMENT out ELEMENTS);
OVERFLOW exception;

UNDERFLOW exception;

private

type STACKINFO;
type STACKS is access STACK_INFO;

end BOUNDEDSTACK;

The third is a parameterless generic abstract data object (GADO). It differs from the ADO (the first
example) simply by being generic, so that the user can instantiate it multiple times to obtain multiple
stacks of integers.

generic
package BOUNDEDSTACK is

subtype ELEMENTS is iNTEGER;
MAXSTACKSIZE : constant := 100;
procedure PUSH (ELEMENT in ELEMENT.);
procedure POP (ELEMENT Out ELEMENTS);
OVERFLOW exception;
UNDERFLOW exception;

end BOUNDEDSTACK;

The fourth is a slight variant on the third, still a generic abstract data object (GADO) but with
parameters. It differs from the third example by making the data type of the stack a generic parameter
so that stacks of data types other than INTEGER can be created. Also, MAX_STACKSIZE has been made a
generic parameter which defaults to 100 but can be specified by the user, rather than a constant defined
by the package.

generic
type ELEMENTS is limited private;
with procedure ASSIGN (FROM : in ELEMENTS; TO out ELEMENTS);
MAXSTACKSIZE : in NATURAL :- 100;

package BOUNDED_STACK is
procedure PUSH (ELEMENT in ELEMENTS);
procedure POP (ELEMENT out ELEMENTS);

OVERFLOW exception;
UNDERFLOW exception;

end BOUNDEDSTACK;

Finally, the fifth is a generic abstract data type (GADT). It differs from the GADO in the fourth example
in the same way that the ADT in the second example differed from the ADO in the first example; it
exports the STACKS type, which allows the user to declare any number of stacks.

generic
type ELEMENTS is limited private;
with procedure ASSIGN (FROM in ELEMENTS; TO out ELEMENTS):
MAX STACKSIZE : in NATURAL 100;

package BOUNDEDSTACK is

type STACKS is limited private;
procedure PUSH (STACK in out STACKS; ELEMENT in ELEMENTS);
procedure POP (STACK in out STACKS; ELEMENT out ELEMENTS);
OVERFLOW exception;
UNDERFLOW exception;

private
type STACKINFO;
type STACKS is access STACK_ INFO;

end BOUNDEDSTACK;
..

134 Ada QUALITY AND STYLE

rationale

The biggest advantage of an ADT over an ADO (or a GADT over a GAbU) is that the ,_,qer of the
package can declare as many objects as desired with an ADT. These objects can be declared as
standalone variables or as components of arrays and records. They can also be passed as parameters.
None of this is possible with an ADO, where the single data object is encapsulated inside of the package.
Furthermore, an ADO provides no more protection of the data structure than an ADT. When a private
type is exported by the ADT package, as in the example above, then for both the ADO and ADT, the
only legal operations which can modify the data are those defined explicitly by the package (in this case,
PUSH and PoP). For these reasons, an ADT or GADT is almost always preferable to an ADO or GADO,
respectively.

A GADO is similar to an ADT in one way: it allows multiple objects to be created by the user. With an
ADT, multiple objects can be declared using the type defined by the ADT package. With a GADO
(even a GADO with no generic formal parameters, as shown in the third example), the package can be
instantiated multiple times to produce multiple objects. However, the similarity ends there. The multiple
objects produced by the instantiations suffer from all restrictions described above for ADOs: they
cannot be used in arrays or records or passed as parameters. Furthermore, the objects are each of a
different type, and no operations are defined to operate on more than one of them at a time. For
example, there cannot be an operation to compare two such objects or to assign one to another. The
multiple objects declared using the type defined by an ADT package suffer from no such restrictions;
they can be used in arrays and records and can be passed as parameters. Also, they are all declared to
be of the same type, so that it is possible for the ADT package to provide operations to assign, compare,
copy, etc. For these reasons, an ADT is almost always preferable to a parameterless GADO.

The biggest advantage of a GADT or GADO over an ADT or ADO, respectively, is that the GADT and
GADO are generic and can thus be parameterized with types, subprograms, and other configuration
information. Thus, as shown above, a single generic package can support bounded stacks of any data
type and any stack size, while the ADT and ADO above are restricted to stacks of INTEGER, no more than
100 in size. For this reason, a GADO or GADT is almost always preferable to an ADO or ADT.

The list of examples above is given in order of increasing power and flexibility, starting with an ADO and
ending with a GADT. These advantages are not expensive in terms of complexity or development time.
The specification of the GADT above is not significantly harder to write or understand than the
specification of the ADO. The bodies are also nearly identical. Compare the body for the simplest
version, the ADO:

package body BOUNDED STACK is
type STACK_SLOTS is array (NATURAL range <>) of ELEMENTS;
type STACKINFO is

record

SLOTS : STACKSLOTS (1 .. MAX_STACKSIZE);
INDEX : NATURAL := 0;

end record;
STACK : STACKINFO;

procedure PUSH (ELEMENT : in ELEMENTS) is
begin

if STACK.INDEX >= MAX_STACKSIZE then
raise OVERFLOW;

end if;
STACK.INDEX := STACK. INDEX + 1;
STACK.SLOTS (STACK.INDEX) := ELEMENT;

end PUSH;
...

procedure POP (ELEMENT : out ELEMENTS) is
begin

if STACK.INDEX <= 0 then
raise UNDERFLOW;

end if;

ELEMENT := STACK.SLOTS (STACK. INDEX);
STACK.INDEX := STACK.INDEX - 1

end POP;

end BOUNDEDSTACK;
..

REUSABILITY 135

with the body for the most powerful and flexible version, the GADT:

package body BOUNDEDSTACK is
type STACK_SLOTS is array (NATURAL range <>) of ELEMENTS;
type STACK_INFO is

r.cord

SLOTS STACKSLOTS (1 .. MAX_STACKSIZE);
INDEX NATURAL := 0;

end record;

procedure PUSH (STACK : in out STACKS; ELEMENT in ELEMENTS) is

begin
if STACK.INDEX >= MAX_STACKSIZE then

raise OVERFLOW;
end if:

STACK.INDEX := STACK.INDEX + 1;
ASSIGN (FROM => ELEMENT, TO => STACK.SLOTS (STACK.INDEX));

end PUSH;

procedure POP (STACK : in out STACKS; ELEMENT out ELEMENTS) is
begin

if STACK.INDEX <= 0 then
raise UNDERFLOW;

end if;
ASSIGN (FROM => STACK.SLOTS (STACK.INDEX), TO => ELEMENT);
STACK.INDEX := STACK.INDEX - 1;

end POP;

end BOUNDEDSTACK;

There are only two differences. First, the ADO declares a local object called STACK, while the GADT has
one additional parameter (called STACK) on each of the exported procedures PUSH and PoP. Second, the
GADT uses the ASSIGN procedure rather than the assignment operator ":=" because the generic formal
type ELEMENT was declared limited private. This second difference could have been avoided by
declaring ELEMENT as private, but this is not recommended because it reduces the composability of the
generic reusable part.

8.3.5 Iterators

guideline

• Provide iterators for traversing complex data structures within reusable parts.

* Provide both active and passive iterators.

" Protect the iterators from errors due to modification of the data structure during iteration.

" Document the behavior of the iterators when the data structure is modified during traversal.

example

The fnllouing package ,definc :an ;hstract list data type, with both active and passive iterators for
traversing a list.

136 Ada QUALITY AND STYLE

..

generic
type ELEMENTS is limited private;
with procedure ASSIGN (FROM : in ELEMENTS; TO : out ELEMENTS);

package UNBOUNDED_LIST is
type LISTS is limited private;
procedure INSERT ,
procedure REMOVE (.

-- Passive (generic) iterator.
generic

with procedure PROCESS (ELEMENT : in out ELEMENTS;
CONTINUE out BOOLEAN);

procedure ITERATE (LIST : in LISTS);

-- Active iterator
type ITERATORS is limited private;
procedure INITIALIZE (ITERATOR in out ITERATORS;

LIST in LISTS);
function MORE (ITERATOR in ITERATORS) return BOOLEAN;
procedure ADVANCE (ITERATOR in out ITERATORS);
function CURRENT (ITERATOR in ITERATORS) return ELEMENTS;
procedure TERMINATE (ITERATOR in out ITERATORS);

private

end UNBOUNDEDLIST;

After instantiating the generic package, and declaring a list, as:

with UNBOUNDEDLIST;
procedure LISTUSER is

type EMPLOYEES is ...

procedure ASSIGN (FROM : in EMPLOYEES: TO : out EMPLOYEES);

package MY_LIST is
new UNBOUNDEDLIST (ELEMENTS => EMPLOYEES, ASSIGN => ASSIGN);

EMPLOYEELIST : MYLIST.LISTS;

the passive iterator is instantiated, specifying the name of the routine which should be called for each list
element when the iterator is called.

procedure PROCESSEMPLOYEE (EMPLOYEE : in out EMPLOYEES;
CONTINUE : out BOOLEAN) is

begin -- PROCESS_EMPLOYEE
-- Perform the required action for EMPLOYEE here.

CONTINUE := TRUE;
end PROCESSEMPLOYEE;

procedure PROCESSALLEMPLOYEES is
new MYLIST.ITERATE (PROCESS => PROCESSEMPLOYEE);

The passive iterator can then be called, as:

begin -- LIST_USER
PROCESS ALL EMPLOYEES (EMPLOYEELIST);

end LISTUSER;

Alternatively, the active iterator can be used, without the second instantiation required by the passive
iterator, as:

REUSABILITY 137

ITERATOR MY_LIST.ITERATORS;
EMPLOYEE EMPLOYEES;
...

begin -- LISTUSER

MYLIST.INITIALIZE (ITERATOR => ITERATOR, LIST => EMPLOYEE_LIST);
while MY LIST.MORE (ITERATOR) loop

ASSIGN (FROM => MY_LIST.CURRENT (ITERATOR), TO => EMPLOYEE);
MYLIST.ADVANCE (ITERATOR);

-- Perform the required action for EMPLOYEE here.
end loop;
MY LIST.TERMINATE (ITERATOR);

end LISTUSER;
..

rationale

Iteration over complex data structures is often required and, if not provided by the part itself, can be
difficult to implement without violating information hiding principles.

.ctive and passive iterators each have their advantages, but neither is appropriate in all situations.
herefore, it is recommended that both be provided to give the user a choice of which to use in each

situation.

Passive iterators are simpler and less error-prone than active iterators, in the same way that the for loop
is simpler and less error-prone than the while loop. There are fewer mistakes that the user can make in
using a passive iterator. Simply instantiate it with the routine to be executed for each list element, and
call the instantiation for the desired list. Active iterators require more care by the user. The iterator must
be declared, then initialized with the desired list, then CURRENT and ADVANCE must be called in a loop until
MORE returns false, then the iterator must be terminated. Care must be taken to perform these steps in the
proper sequence. Care must also be taken to associate the proper iterator variable with the proper list
variable. It is possible for a change made to the software during maintenance to introduce an error,
perhaps an infinite loop.

On the other hand, active iterators are more flexible than passive iterators. With a passive iterator, it is
difficult to perform multiple, concurrent, synchronized iterations. For example, it is much easier to use
active iterators to iterate over two sorted lists, merging them into a third sorted list. Also, for
multidimensional data structures, a small number of active iterator routines may be able to replace a
large number of passive iterators, each of which implements one combination of the active iterators.
Consider, for example, a binary tree. In what order should the passive iterator visit the nodes? Depth
first? Breadth first? What about the need to do a binary search of the tree? Each of these could be
implemented as a passive iterator, but it may make more sense to simply define the MORELEFT,

MORE RIGHT, AD"ANCELEFT. and ADVANCERIGHT routines required by the active iterator to cover all
combinations. Finally, active iterators can be passed as generic formal paran- ters while passive iterators
cannot because passive iterators are themselves generic, and generic units cannot be passed as
parameters to other generic units.

For either type of iterator, semantic questions can arise about what happens when the data structure is
modified as it is being iterated. When writing an iterator, be sure to consider this possibility, and indicate
with comments the behavior which occurs in such a case. It is not always obvious to the user what to
expect. For example, to determine the "closure" of a mathematical "set" with respect to some
operation, a common algorithm is to iterate over the members of the set, generating new elements and
adding them to the set. In such a case, it is important that elements added to the set during the iteration
be encountered subsequently during the iteration. On the other hand, for other algorithms it may be
important that the set which it iterated is the set as it existed at the beginning of the iteration. In the case
of a prioritized list data structure, if the list is iterated in priority order, it may be important that elements
inserted at lower priority than the current element during iteration not be encountered subsequently
during the iteration, but that elements inserted at a higher priority should be encountered. In any case,
make a conscious decision about how the iterator should operate, and document that behavior in the
package specification.

Deletions from the data structure also pose a problem for iterators. It is a common mistake for a user to
iterate over a data structure, deleting it piece by piece during the iteration. If the iterator is not prepared
for such a situation, it is possible to end up dereferencing a null pointer or committing a similar error.
Such situations can be prevented by storing extra information with each data structure which indicates
whether it is currently being iterated, and using this information to disallow any modifications to the data
structure during iteration. When the data structure is declared as a limited private type, as should

138 Ada QUALITY AND STYLE

usually be the case when iterators are involved, the only operations defined on the type are declared
explicitly in the package which declares the type, making it possible to add such tests to all modification
operations.

note
For further discussion of passive and active iterators, (see Ross 1989 and Booch 1987).

8.3.6 Private and Limited Private Types
guideline

" Use limited private (not private) for generic formal types, explicitly importing assignment and
equality operations if required.

" Export limited private, private, or nonprivate types, as appropriate, from generic packages.

* Use mode in out rather than out for parameters of a generic formal subprogram, when the
parameters are of an imported limited type.

example

The first example violates the guideline by having private (nonlimited) generic formal types.

generic
type ITEMS is private;
type KEYS is private;
with function KEY-OF (LEFT : in ITEMS) return KEYS;

package LIST_MANAGER is
type LISTS is limited private;

procedure INSERT (LIST in LISTS;
ITEM in ITEMS);

procedure RETRIEVE (LIST in LISTS;
KEY in KEYS;
ITEM in out ITEMS);

private

end LIST_MANAGER;

The second example is improved by using limited private generic formal types and importing the
assignment operation for ITEMS and the equality operator for KEYS.

generic
type ITEMS is limited private;
type KEYS is limited private;
with procedure ASSIGN (FROM in ITEMS; TO : in out ITEMS);

with function ,=" (LEFT, RIGHT : in KEYS) return BOOLEAN;
with function KEYOF (LEFT in ITEMS) return KEYS;

package LIST_MANAGER is
type LISTS is limited private;

procedure INSERT (LIST in LISTS;
ITEM in ITEMS);

procedure RETRIEVE (LIST in LISTS;
KEY in KEYS;
ITEM in out ITEMS);

private

end LISTMANAGER;

rationale

For a generic component to be usable in as many contexts as possible, it should minimize the
assumptions that it makes about its environment and should make explicit any assumptions that are
necessary. In Ada, the assumptions made by generic units can be stated explicitly by the types of the

REUSABILITY 139

generic formal parameters. A limited private generic formal type prevents the generic unit from making
any assumptions about the structure of objects of the type or about operations defined for such objects.
A private (nonlimited) generic formal type allows the assumption that assignment and equality
comparison operations are defined for the type. Thus, a limited private data type cannot be specified as
the actual parameter for a private generic formal type.

Therefore, generic formal types should almost always be limited private rather than just private. This
restricts the operations available on the imported type within the generic unit body but provides
maximum flexibility for the user of the generic unit.. Any operations required by the generic body should
be explicitly imported as generic formal subprograms. In the second example above, only the operations
required for managing a list of items with keys are imported: ASSIGN provides the ability to store items in
the list, and KEYOF and "=" support determination and comparison of keys during retrieval operations.
No other operations are required to manage the list. Specifically, there is no need to be able to assign
keys or compare entire items for equality. Those operations would have been implicitly available if a
private type had been used for the generic formal type, and any actual type for which they were not
defined could not have been used with this generic unit.

The situation is reversed for types exported by a reusable part. For exported types, the restrictions
specified by limited and limited private are restrictions on the user of the part, not on the part itself. To
provide maximum capability to the user of a reusable part, export types with as few restrictions as
possible. Apply restrictions as necessary only to protect the integrity of the exported data structures and
the abstraction.

In the example above, the LISTS type is exported as limited private to hide the details of the list
implementation and protect the structure of a list. Limited private is chosen over private to prevent the
user from being able to use the predefined assignment operation. This is important if the list is
implemented as an access type pointing to a linked lists of records, because the predefined assignment
would make copies of the pointer, not copies of the entire list, which the user may not realize. If it is
expected that the user needs the ability to copy lists, then a copy operation should be explicitly exported.

Because they are so restrictive, limited private types are not always the best choice for types exported by
a reusable part. In a case where it makes sense to allow the user to make copies of and compare data
objects, and when the underlying data type does not involve access types (so that the entire data
structure gets copied or compared), then it is better to export a (nonlimited) private type. In cases where
it does not detract from the abstraction to reveal even more about the type, then a nonprivate type (e.g.,
a numeric, enumerated, record, or array type) should be used.

For cases where limited private types are exported, the package should explicitly provide equality and
assignment operations, if appropriate to the abstraction. Limited private is almost always appropriate for
types implemented as access types. In such cases, predefined equality is seldom the most desirable
semantics. In such cases, also consider providing both forms of assignment (assignment of a reference
and assignment of a copy).

When the parameters are of an imported limited type, using mode in out instead of out for parameters
of a generic formal subprogram is important for the following reason. Ada allows an out mode parameter
of a limited private type on a subprogram 2n4 when the subprogram is declared in the visible part of the
package which that declares the private type. See section 7.4.4(4) of the Ada Language Reference
Manual (Department of Defense 1983).There is no such restriction in parameters of mode in out.The
result of this is that if you define a generic with a limited generic formal type and a generic formal
subprogram with an out parameter of that type, then the generic can only be instantiated with a limited
private actual type if the package which declares that type also declares a subprogram with exactly the
same profile (number and types or arguments and return value) as your generic formal subprogram. A
potential user who wants to instantiate your generic with a limited type defined in another package will
not be able to write a subprogram to pass as the generic actual.

note

It is possible (but clumsy) to redefine equality for nonlimited types. However, if a generic imports a
(nonlimited) private type and uses equality, it will automatically use the predefined equality and not the
user-supplied redefinition. This is another argument for using limited private generic formal parameters.

140 Ada QUALITY AND STYLE

8.4 INDEPENDENCE

A reusable part should be as independent as possible of other reusable parts. A potential user is less inclined
to reuse a part if that part requires the use of other parts which seem unnecessary. The "extra baggage" of
the other parts wastes time and space. A user would like to be able to reuse only that part which is perceived
as useful.

Note that the concept of a "part" is intentionally vague here. A single package does not need to be
independent of each other package in a reuse library, if the "parts" from that library which are typically
reused are entire subsystems. If the entire subsystem is perceived as providing a useful function, the entire
subsystem is reused. However, the subsystem should not be tightly coupled to all the other subsystems in the
reuse library, so that it is difficult or impossible to reuse the subsystem without reusing the entire library.
Coupling between reusable parts should only occur when it provides a strong benefit perceptible to the user.

8.4.1 Using Generic Parameters to Reduce Coupling

guideline
• Mirimize with clauses on reusable parts, especially on their specifications.

• Use generic parameters instead of with statements to reduce the number of context clauses on a
reusable part.

• Use generic parameters instead of with statements to import portions of a package rather than the
entire package.

example
A procedure like the following:

with PACKAGE_A;
procedure PRODUCE_AND_STOREA ..) is

begin

PACKAGE A.PRODUCE (. .)

PACKAGE_A.STORE ..);

end PRODUCE_AND_STOREA;

can be rewritten as a generic unit:

generic
with procedure PRODUCE (.
with procedure STORE (.

procedure PRODUCE_ANDSTORE;

procedure PRODUCE_ANDSTORE is

begin

PRODUCE)

STORE

end PRODUCE_ANDSTORE;

and then instantiated:

with PACKAGE_A;
with PRODUCEANDSTORE;
procedure PRODUCE_AND_STORE_A is
new PRODUCEANDSTORE

(PRODUCE => PACKAGE_A.PRODUCE,
(STORE => PACKAGEA.STORE);

..

REUSABILITY 141

rationale

Context (with) clauses specify the names of other units upon which this unit depends. Such
dependencies cannot and should not be entirely avoided, but it is a good idea to minimize the number of
them which occur in the specification of a unit. Try to move them to the body, leaving the specification
independent of other units so that it is easier to understand in isolation. Also, organize your reusable
parts in such a way that the bodies of the units do not contain large numbers of dependencies on each
other. Partitioning your library into independent functional areas with no dependencies spanning the
boundaries of the areas is a good way to start. Finally, reduce dependencies by using generic formal
parameters instead of with statements, as shown in the example above. If the units in a library are too
tightly coupled, then no single part can be reused without reusing most or all of the library.

The first (nongeneric) version of PRODUCE AND STORE A above is difficult to reuse because it depends on
PACKAGEA which may not be general purpose or generally available. If the operation PRODUCE_AND_STORE

has reuse potential which is reduced by this dependency, a generic unit and an instantiation should be
produced as shown above. Note that the with clause for PACKAGEA has been moved from the
PRODUCE_ANDSTORE generic procedure which encapsulates the reusable algorithm to the
PRODUCE_AND_STOREA instantiation. Instead of naming the package which provides the required
operations, the generic unit simply lists the required operations themselves. This increases the
independence and reusability of the generic unit.

This use of generic formal parameters in place of with clauses also allows visibility at a finer granularity.
The with clause on the nongeneric version of PRODUCEANDSTOREA makes all of the contents of
PACKAGEA visible to PRODUCE_AND_STOREA, while the generic parameters on the generic version make
only the PRODUCE and STORE operations available to the generic instantiation.

8.4.2 Coupling Due to Pragmas

guideline
" Avoid pragma ELABORATE in reusable parts.

" Avoid pragma PRIORITY in tasks hidden in reusable parts.

rationale
Pragma ELABORATE controls the order of elaboration of one unit with respect to another. This is another
way of coupling units and should be avoided when possible in reusable parts, because it restricts the
number of configurations in which the reusable parts can be combined.

Pragma PRIORITY controls the priority of a task relative to all other tasks in a particular system. It is
inappropriate in a reusable part which does not know anything about the requirements and importance
of other parts of the systems in which it is reused. Give careful consideration to a reusable part which
claims that it can only be reused if its embedded task has the highest priority in the system. No two such
parts can ever be used together.

8.4.3 Part Families

guideline
a Create families of generic or other parts with similar specifications.

example
The Booch parts (Booch 1987) are an example of the application of this guideline.

rationale
Different versions of similar parts (e.g., bounded versus unbounded stacks) may be needed for different
applications or to change the properties of a given application. Often, the different behavior, required
by these versions cannot be obtained using generic parameters. Providing a family of parts with similar
specifications makes it easy for the programmer to select the appropriate one for the current application
or to substitute a different one if the needs of the application change.

note
A reusable part which is structured from subparts which are members of part families is particularly easy
to tailor to the needs of a given application by substitution of family members.

142 Ada QUALITY AND STYLE

8.4.4 Conditional Compilation
guideline

Structure reusable code to take advantage of dead code removal by the compiler.

example
...

separate (MATRIXMATH)
procedure INVERT (...) is

type ALGORITHM is (GAUSSIAN, PIVOTING, CHOLESKI, TRIDIAGONAL);
WHICHALGORITHM : constant ALGORITHM := CHOLESKI;

begin -- INVERT
case WHICHALGORITHM is

when GAUSSIAN => ...

when PIVOTING => ...

when CHOLESKI => ...
when TRIDIAGONAL => ...

end case;
end INVERT;

rationale

Some compilers omit object code corresponding to parts of the program which they detect can never be
executed. Constant expressions in conditional statements take advantage of this feature where it is
available, providing a limited form of conditional compilation. When a part is reused in an
implementation that does not support this form of conditional compilation, this practice produces a
clean structure which is easy to adapt by deleting or commenting out redundant code where it creates an
unacceptable overhead.

caution

Be aware of whether your implementation supports dead code removal, and be prepared to take other
steps to eliminate the overhead of redundant code if necessary.

8.4.5 Table-Driven Programming
guideline

0 Write table-driven reusable parts where possible and appropriate.

example

The epitome of table-driven reusable software is a parser generation system. A specification of the form
of the input data and of its output, along with some specialization code, is converted to tables that are to
be "walked" by pre-existing code using predetermined algorithms in the parser produced. Other forms
of "application generators" work similarly.

rationale

Table-driven (sometimes known as data-driven) programs have behavior that depends on data with'ed
at compile time or read from a file at run-time. In appropriate circumstances, table-driven programming
provides a very powerful way of creating general-purpose, easily tailorable, reusable parts.

note

Consider whether differences in the behavior of a general-purpose part could be defined by some data
structure at compile- or run-time and, if so, structure the part to be table-driven. The approach is most
likely to be applicable when a part is designed for use in a particular application domain but needs to be
specialized for use in a specific application within the domain. Take particular care in commenting the
structure of the data needed to drive the part.

8.5 SUMMARY
understanding and clarity

* Select the least restrictive names possible for reusable parts and their identifiers.

* Reserve the best name for a generic instantiation, using the second best for the generic unit itself.

REUSABILITY 143

* Use names which indicate the ehavioral characteristics of the reusable part, as well as its
abstraction.

* Do not use = abbreviations in identifier or unit names.

robustness

* Use symbolic constants and constant expressions to allow multiple dependencies to be linked to a
small number of symbols.

• Use unconstrained array types for array formal parameters and array return values.
" Make the size of local variables depend on actual parameter size where appropriate.

" Minimize the number of assumptions made by a unit.

* For assumptions which cannot be avoided, use types to automatically enforce conformance.

* For assumptions which cannot be automatically enforced by types, add explicit checks to the code.

* Document all assumptions.

* Beware of using subtypes as type marks when declaring generic formal objects of type in out.

" Beware of using subtypes as type marks when declaring parameters or return values of generic
formal subprograms.

* Use symbolic expressions of attributes rather than literal values in reference to generic formal
objects, and parameter and return values of generic formal subprograms.

• Be careful about overloading the names of subprograms exported by the same generic package.

" Document which generic formal parameters are accessed from a task hidden inside the generic unit.

* Propagate exceptions out of reusable parts. Handle exceptions within reusable parts only when you
are certain that the handling is appropriate in all circumstances.

* Always propagate exceptions raised by generic formal subprograms, after performing any cleanup
necessary to the correct operation of future invocations of the generic instantiation.

* Always leave state variables unmodified when raising an exception.

• Always leave parameters unmodified when raising an exception.

adaptability
* Provide complete functionality in a reusable part or set of parts. Build in complete functionality,

including end conditions, even if some functionality is not needed in this application.
° Use generic units to avoid code duplication.

• Parameterize generic units for maximum adaptability.

" Reuse common instantiations of generic units, as well as the generic units themselves.

• Use generic units to encapsulate algorithms independently of data type.
° Use abstract data types in preference to abstract data objects.

" Use generic units to implement abstract data types independently of their component data type.
• Provide iterators for traversing complex data structures within reusable parts.

" Provide both active and passive iterators.

* Protect the iterators from errors due to modification of the data structure during iteration.

" Document the behavior of the iterators when the data structure is modified during traversal.

* Use limited private (not private) for generic formal types, explicitly importing assignment and
equality operations if required.

* Export limited private, private, or nonprivate types, as appropriate, from generic packages.

* Use mode in out rather than out for parameters of a generic formal subprogram, when the
parameters are of an imported limited type.

* Minimize with clauses on reusable parts, especially on their specifications.

144 Ada QUALITY AND STYLE

* Use generic parameters instead of with statements to reduce the number of context clauses on a
reusable part.

• Use generic parameters instead of with statements to import portions of a package rather than the
entire package.

* Avoid pragma ELABORATE in reusable parts.

* Avoid pragma PRIORITY in tasks hidden in reusable parts.

* Create families of generic or other parts with similar specifications.

* Structure reusable code to take advantage of dead code removal by the compiler.

* Write table-driven reusable parts where possible and appropriate.

CHAPTER 9
Instantiation

A number of guidelines in this book are generic in nature. That is, they present a general principle of good
Ada style, such as consistent indentation of source text, but do not prescribe a particular instantiation of that

principle. In order to allow this book to function as a coding standard, you will need a particular

instantiation.

This chapter lists all the guidelines requiring instantiation, and shows the instantiation adopted for the

examples in this book. You might want to consider this instantiation as a coding standard. A code formatter
can enforce many of these standards or change code to meet them as needed.

9.1 HORIZONTAL SPACING

guideline (2.1.1)
" Use consistent spacing around delimiters.

" Use the same spacing as you would in regular prose.

instantiation

Specifically, leave at least one blank space in the following places, as shown in the examples throughout
this book. More spaces may be required for the vertical alignment recommended in subsequent
guidelines.

- Before and after the following delimiters and binary operators:
+ - / &

- 1 = <= >=

- Outside of the quotes for string (-) and character (') literals, except where prohibited below.

- Outside, but not inside, of parentheses.

- After commas (.) and semicolons (;).

Do not leave any blank spaces in the following places, even if this conflicts with the above
recommendation.
- After the plus (+) and minus (-) signs when used as unary operators.

- Inside of label delimiters (<<).

- Before and after the following:

145

146 Ada QUALITY AND STYLE

- Between multiple consecutive opening or closing parentheses.

- Before commas (.) and semicolons (;).

9.2 INDENTATION

guideline (2.1.2)
" Indent and align nested control structures, continuation lines, and embedded units consistently.

" Distinguish between indentation for nested control structures and for continuation lines.

" Use spaces for indentation, not the tab character (Nissen and Wallis 1984, §2.2).

instantiation

Specifically, the following indentation conventions are recommended, as shown in the examples
throughout this book. Note that the minimum indentation is described. More spaces may be required
for the vertical alignment recommended in subsequent guidelines.

- Use the recommended paragraphing shown in the (Ada Reference Manual 1983).

- Use three spaces as the basic unit of indentation for nesting.

- Use two spaces as the basic unit of indentation for continuation lines.

A label is outdented three spaces. A continuation line is indented two spaces:

<<label>> <long statement with line break>
<statement> <trailing part of same statement>

The if statement and the plain loop:

if <condition> then <name>:
<statements> loop

elsif <condition> then <statements>
<statements> exit when <condition>:

else <statements>
<statements> end loop;

end if;

Loops with the for and while iteration schemes:

<name>: j <name>:
for <scheme> loop I while <condition> loop

<statements> I <statements>
end loop: I end loop;

The block and the case statement as recommended in the (Ada Reference Manual 1983):

<name>: case <expression> is
declare when <choice> =>

<declarations> <statements>
begin when <choice> =>

<statements> <statements>
exception when others =>

when <choice> => <statements>
<statements> end case;

when others =>
<statements>

end <name>;

These case statements save space over the Ada Reference Manual recommendation and depend on very
short statement lists, respectively. Whichever you choose, be consistent.

case <expression> is case <expression> is
when <choice> => when <choice> => <statements>

<statements> <statements>
when <choice> => when <choice> => <statements>

<statements> when others => <statements>
when others => end case

<statements>
end case;

INSTANTIATION 147

The various forms of selective wait and the timed and conditional entry calls:

select select
when <guard> => <entry call>;

<accept statement> <statements>
<statements> or

or delay <interval>;
<accept statement> <statements>
<statements> end select;

or
when <guard> =>

delay <interval>;
<statements>

or select
when <guard> => <enter call>;

terminate; <statements>
else else

<statements> <statements>
end select; end select;

The accept statement and a subunit:

accept <specification> do separate (<parent unit>)
<statements> <proper body>

end <name>;

Body stubs of the program units:

procedure <specification> is package body <name> is
separate; separate;

function <specification> task body <name> is
return <type> is separate;
separate;

Proper bodies of program units:

procedure <specification> is package body <name> is
<declarat;ons> <declarations>

begin begin
<statements> <statements>

exception exception
when <choice> => when <choice> =>

<statements> <statements>
end <name>; end <name>;

function <specification> task body <name> is
return <type name> is <declarations>
<declarations> begin

begin <statements>
<statements> exception

exception when <choice> =>
when <choice> => <statements>

<statements> end <name>;
end <name>;

Context clauses on compilation units are arranged as a table and are indented so as not to obscure the
introductory line of the unit itself. Generic formal parameters do not obscure the unit itself. Function,
package, and task specifications use standard indent:

with <name>, function <specification>
<name>, return <type>;
<name>;

use <name>, package <name> is
<name>, <declarations>
<name>; private

<compilation unit> <declarations>
end <name>;

generic -- <kind of unit> <name> task type <name> is
<formal parameters> entry <declaration>

<compilation unit> end <name>;

148 Ada QUALITY AND STYLE

Instandations of generic units, and indentation of a record:

procedure <name> is type ... is
new <generic name> <actuals> record

<component list>
function <name> is case <discriminant name> is

new <generic name> <actuals>] when <choice> =>
<component list>

package <name> is when <choice> =>
new <generic name> <actuals> <component list>

end case;
end record;

Indeniatio' for record alignment:

for <name> use
record <alignment clause>

<component clause>
end record;

9.3 MORE ON ALIGNMENT

guideline (2.1.5)
0 Align parameter modes and parentheses vertically.

instantiation

Specifically it is recommended that you:

- Place one formal parameter specification per line.

- Vertically align parameter names, colons, the reserved word in, the reserved word out, and
parameter types.

- Place the first parameter specification on the same line as the subprogram or entry name. If any of
the parameter types are forced beyond the line length limit, place the first parameter specification
on a new line indented as for continuation lines.

9.4 PAGINATION
guideline (2.1.7)

0 Highlight the top of each package or task specification, the top of each program unit body, and the
begin and end statements of each program unit.

instantiation

Specifically, it is recommended that you:

- Use a line of dashes, beginning at the same column as the current indentation.

- Use the shorter of the two dashed lines if they are adjacent.

- Omit the dashed line above the begin.

- When putting a dashed line at the top of a compilation unit, put it before, not after, the context
clauses.

9.5 SOURCE CODE LINE LENGTH

guideline (2.1.9)

• Adhere to a maximum line length limit for source code (Nissen and Wallis 1984, §2.3).

instantiation

Specifically, it is recommended that you:

- Limit source code line lengths to a maximum of 78 characters.

INSTANTIATION 149

9.6 NUMBERS
guideline (3.1.2)

" Represent numbers in a consistent fashion.

* Represent literals in a radix appropriate to the problem.

" Use underscores to separate digits the same way commas (or spaces for nondecimal bases) would be
used in handwritten text.

" When using scientific notation, make the E consistently either upper or lower case.

" In an alternate base, represent the alphabetic characters in either all upper case, or all lower case.

instantiation

- Decimal and octal numbers are grouped by threes beginning counting on either side of the radix
point.

- The E is always capitalized in scientific notation.

- Use upper case for the alphabetic characters representing digits in bases above 10.

- Hexadecimal numbers are grouped by fours beginning counting on either side of the radix point.

9.7 CAPITALIZATION
guideline (3.1.3)

0 Make reserved words and other elements of the program visually distinct from each other.

instantiation

- Use lower case for all reserved words.

- Use upper case for all other identifiers.

9.8 FILE HEADERS
guideline (3.3.2)

• Put a file header on each source file.

• Place ownership, responsibility, and history information for the file in the file header.

instantiation

- Put a copyright notice in the file header.

- Put the author's name and department in the file header.

- Put a revision history in the file header, including a summary of each change, the date, and the
name of the person making the change.

9.9 PROGRAM UNIT SPECIFICATION HEADER

guideline (3.3.3)

" Put a header on the specification of each program unit.

" Place information required by the user of the program unit in the specification header.

" Do not repeat information (except unit name) in the specification header which is present in the
specification.

* Explain what the unit does, not how or why it does it.

• Describe the complete interface to the program unit, including any exceptions it can raise and any
global effects it can have.

" Do not include information about how the unit fits into the enclosing software system.

150 Ada QUALITY AND STYLE

• Describe the performance (time and space) characteristics of the unit.

instantiation
- Put the name of the program unit in the header.
- Briefly explain the purpose of the program unit.

- For packages, describe the effects of the visible subprograms on each other, and how they should be
used together.

- List all exceptions which can be raised by the unit.

- List all global effects of the unit.

- List preconditions and postconditions of the unit.

- List hidden tasks activated by the unit.

- Do not list the names of parameters of a subprogram.

- Do not list the names of subprograms of a package.

- Do not list the names of all other units used by the unit.

- Do not list the names of all other units which use the unit.

9.10 PROGRAM UNIT BODY HEADER

guideline (3.3.4)
" Place information required by the maintainer of the program unit in the body header.

" Explain how and why the unit performs its function, not what the unit does.

" Do not repeat information (except unit name) in the header which is readily apparent from reading
the code.

• Do not repeat information (except unit name) in the body header which is available in the
specification header.

instantiation

- Put the name of the program unit in the header.

- Record portability issues in the header.

- Summarize complex algorithms in the header.

- Record reasons for significant or controversial implementation decisions.

- Record discarded implementation alternatives, along with the reason for discarding them.

- Record anticipated changes in the header, especially if some work has already been done to the
code to make the changes easy to accomplish.

9.11 NAMED ASSOCIATION

guideline (5.2.2)
" Use named parameter association in calls of infrequently used subprograms or entries with many

formal parameters.
• Use named association for constants, expressions, and literals in aggregates.

" Use named association when instantiating generics.

• Use named association for clarification when the actual parameter is any literal or expression.

" Use named association when supplying a nondefault value to an optional parameter.

instantiation
- Use named parameter association in calls of subprograms or entries called from less than five places

in a single source file or with more than two formal parameters.

INSTANTIATION 151

9.12 ORDER OF PARAMETER DECLARATIONS
guideline (5.2.5)

0 Declare parameters in a consistent order (Honeywell 1986).

instantiation

- All in parameters without default values are declared before any in out parameter.

- All in out parameters are declared before any out parameters.

- All out parameters are declared before any parameters with default values.

- All parameters with default values are declared last.

- The order of parameters within these groups is derived from the needs of the application.

9.13 NESTING

guideline (5.6.1)

" Minimize the depth of nested expressions (Nissen and Wallis 1984).

" Minimize the depth of nested control structures (Nissen and Wallis 1984).

" Try simplification heuristics.

instantiation

- Do not nest expressions or control structures beyond a nesting level of five.

9.14 GLOBAL ASSUMPTIONS
guideline (7.1.1)

• Make considered assumptions about the support provided for the following on potential target
platforms:

- Number of bits available for type INTEGER.

- Number of decimal digits of precision available for floating point types.

- Number of bits available for fixed-point types.

- Number of characters per line of source text.

- Number of bits for universal _integer expressions.

- Number of seconds for the range of DURATION.

- Number of milliseconds for DURATION'SMALL.

instantiation

These are minimum values (or minimum precision in the case of DURATION'SMALL) that a project or
application might assume that an implementation provides. There is no guarantee that a given
implementation provides more than the minimum, so these would be treated by the project or
application as maximum values also.

- 16 bits available for type INTEGER.

- 6 decimal digits of precision aailable for floating point types.

- 32 bits available for fixed-point types.

- 72 characters per line of source text.

- 16 bits for universalinteger expressions.

- -86_400 - 86_400 seconds (1 day) for the range of DURATION.

- 20 milliseconds for DURATION'SMALL.

152 Ada QUALITY AND STYLE

CHAPTER 10
Complete Exgmple

This chapter contains an example program to illustrate use of the guidelines. The program implements a
simple menu-driven user interface that cculd be used as the front end for a variety of applications. It
consists of a package for locally defined types (SPC_NUMERIC_TYPES), instantiations of I/O packages for those
typeq (found in spc int io_.a and spc_rea_io_.a), a package to perform ASCII terminal I/O for
generating menus, writing prompts and receiving user input (TERMINAL_IO), and finally an example using the

terminal I/O routines (EXAMPLE).

Within TERMINAL 1O, subprogram names are overloaded when several subprograms perform the same general

function but for different data types.

The body for TERMINAL_IO uses separate compilation capabilities for a subprogram, DISPLAYEZNU, that is
larger and more involved than the rest. Note that all literals that would be required are defined as constants.
Nested loops, where they exist, are also named. The function defined in the file terminal io.a on line 63
encapsulates a local exception handler within a loop. Where locally defined types could not be used, there is
a comment explaining the reason. The use of short circuit control forms, both on an if statement and an exit
are also illustrated.

The information that would have been in the file headers is redundant since it is coti.ained in the title page of
this book. The file headers are omitted from the following listings.

153

154 Ada QUALITY AND STYLE

FILE: numerics_.a

1 --
2:package SPC_NUMERICTYPES is
3:
4: type TINY_INTEGER is range -(2**7) (2**7) - 1;

5:
6: type MEDIUM_INTEGER is range -(2.*15) (2**15) - 1;
7:
8: type BIGINTEGER is range -(2**31) . (2**31) - 1;
9:

10: subtype TINYNATURAL
11: is TINYINTEGER range C TINYINTEGER'LAST;
12:
13: subtype MEDIUM_NATURAL
14: is MEDIUMINTEGER range 0 MEDIUM_INTEGER'LAST;
15:
16: subtype BIGNATURAL
17: is BIGINTEGER range 0 BIGINTEGER'! ACT
18:
19: subtype TINYPOSITIVE
20: is TINYINTEGER range 1 . TINY_INTEGER'LAST;
21:
22: subtype MEDIUM_POSITIVE

23: is MEDIUMINTEGER range 1 . MEDIUM_INTEGER'LAST;

24:
25: subtype BIGPOSITIVE
26: is BIGINTEGER range 1 . BIG_INTEGER'LAST;
27:
28: type MEDIUM_FLOAT is digits 6;
29: type BIGFLOAT is digits 9;
30:
31: subtype PROBABILITIES is MEDIUM_FLOAT range 0.0 . 1.0;
32:
33:
34: function MIN (LEFT : in TINYINTEGER;
35: RIGHT : in TINY_INTEGER)
36: return TINYINTEGER;
37:

38: function MAX (LEFT : in TINYINTEGER;
39: RIGHT : in TINYINTEGER)
40: return TINYINTEGER;
41:

42: -- Additional function declarations
43: -- to return the minimum and maximum values for each type.
44:end SPCNUMERICTYPES;
45: --

COMPLETE EXAMPLE 155

FILE: numerics.a
1---

2:package body SPC_NUMERIC_TYPES is
3:
4 : -- -

5: function MIN (LEFT :in TINYINTEGER;
6: RIGHT :in TINYINTEGER)
7: return TINYINTEGER is
8: begin -- MIN
9: if LEFT < RIGHT then

10: return LEFT;
11: else
12: return RIGHT;
13: end if;
14: end MIN;
1 5 : -- -

16: function MAX (LEFT :in TINYINTEGER;
17: RIGHT :in TINYINTEGER)
18: return TINY-INTEGER is
19:
20: begin -- MAX
21: if LEFT > RIGHT then
22: return LEFT;
23: else
24: return RIGHT;
25: end if;
26: end MAX;
2 7 : -- -

28: -- Additional functions to return minimum and maximum
29: value for each type defined in the package.
3 0 : -- -

31:end SPC_NUMERICTYPES;
32:--

FILE: spc-int_10_.a
1:--
2:with SPC_NUMERIC_TYPES,
3: TEXTI0;
4:package SPC_-SMALLINTEGER_10 is new
5: TEXTIO.INTEGER_IC (SPC_NUMERIC_TYPES.TINY_INTEGER);

6:--
7:with SPCNUMERICTYPES,
8: TEXT_10;
9:package MEDIUM_INTEGER_10 is new

10: TEXT_I0.INTEGERIO (SPCNUMERIC_TYPES.MEDIUM_INTEGER);
11: ---
12:with SPCNUMERICTYPES,
13: TEXT_10;
14:package BIGINTEGER_10 is new
15: TEXT_10 INTEGER_10 (SPCNUMERIC_-TYPES.BIGINTEGER);
16:--

FILE: spc-real-io_.a
1:--
2:with SPCNUMERICTYPES,
3: TEXT_10;
4:package MEDIUMFLOAT_10 is new
5: TEXT_10 FLOAT_IC (SPCNUMERIC_TYPES.MEDIU MFLOAT);
6:--
7:with SPCNUMERICTYPES,
8: TEXTI0;
9:package BIG_-FLOAT_IC is new

10: TEXT_10 FLOATIO (SPCNUMERIC_TYPES.BIG_FLOAT):
11:--

t56 Ada QUALITY AND STYLE

FILE: terminalio_.a

1: --
2:with SPCNUMERICTYPES;
3:use SPCNUMERICTYPES;
4:
5:package TERMINAL_I0 is
6:
7: MAXFILENAME constant := 30;
8: MAXLINE : constant := 30;
9:

10: subtype ALPHANUMERICS is CHARACTER range '0' . Z';
11: subtype LINES is STRING (1 MAX_LINE);
12:

13: EMPTY LINE : constant LINES := (others =>
14:
15: type MENUS is array (ALPHA_NUMERICS) of LINES;
16:
17: subtype FILENAMES is STRING (I . MAX_FILE_NAME);
18:
19: procedure GETFILENAME (PROMPT : in STRING;
20: NAME : out FILENAMES;
21: NAMELENGTH : out NATURAL);
22:
23: function YES (PROMPT : STRING) return BOOLEAN;
24:
25: function GET (PROMPT : STRING) return MEDIUM_INTEGER;
26:

27: function GET (PROMPT : STRING) return MEDIUMFLOAT;
28:
29: procedure DISPLAYMENU (TITLE : in STRING;

30: OPTIONS : in MENUS;
31: CHOICE : out ALPHANUMERICS)
32:
33: procedure PAUSE (PROMPT : STRING);
34:
35: procedure PAUSE;
36:
37: procedure PUT (INTEGERVALUE : MEDIUM_INTEGER);
38:
39: procedure PUT (REALVALUE : MEDIUM_FLOAT);
40:
41: procedure PUT (LABEL : STRING;
42: INTEGERVALUE : MEDIUM_INTEGER)
43:
44: procedure PUT (LABEL : STRING;
45: REALVALUE : MEDIUM_FLOAT);
46:
47: procedure PUTLINE (INTEGERVALUE : MEDIUM_INTEGER);
48:
49: procedure PUTLINE (REAL_VALUE : MEDIUM_FLOAT);
50:

51: procedure PUTLINE (LABEL : STRING;
52: INTEGER VALUE : MEDIUMINTEGER);
53:
54: procedure PUTLINE (LABEL : STRING;
55: REALVALUE : MEDIUMFLOAT);
56:
57:end TERMINAL_10;
58: --

FILE: terminal-io.a

1 . --
2:with MEDIUMINTEGERIO,
3: MEDIUMFLOAT_10,
4: TEXT_10;
5:

6:use TEXT_10:
7:

8:package body TERMINAL_10 is -- simple terminal i/o routines
9:

10, subtype RESPONSE is STRING (I - 20);
11:

COMPLETE EXAMPLE 157

12: PROMPT_COLUMN constant := 30;
13: QUESTION_MARK constant STRING " ?
14: STANDARD_PROMPT constant STRING := '

15: BLANK constant CHARACTER
16:
17: procedure PUTPROMPT (PROMPT : STRING;
18: QUESTION : BOOLEAN := FALSE) is
19: begin -- PUTPROMPT
20: PUT (PROMPT);
21: if QUESTION then

22: PUT (QUESTION_MARK);
23: end if;
24: SETCOL (PROMPT_COLUMN);

25: PUT (STANDARDPROMPT);

28: end PUTPROMPT;
27:
28: function YES (PROMPT : STRING) return BOOLEAN is
29:
30: RESPONSE_STRING • RESPONSE := (otheis => BLANK);

31: RESPONSE_STRINGLENGTH : NATURAL;
32:
33: begin -- YES
34: GET RESPONSE:
35: loop

38: PUTPROMPT (PROMPT, QUESTION => TRUE);
37: GET_LINE (RESPONSE_STRING, RESPONSE_STRING_LENGTH);
38: for POSITION in 1 .. RESPONSESTRINGLENGTH loop
39: if RESPONSESTRING (POSITION) /= BLANK then
40: return ((RESPONSE_STRING (POSITION) = 'Y) or
41: (RESPONSE_STRING (POSITION) = 'y'));
42: end if;
43: end loop;
44: NEW LINE; -- issue prompt until non-blank response
45: end loop GETRESPONSE;
46: end YES;
47:
48: procedure GETFILE_NAME
49: (PROMPT : in STRING;

50: NAME : out FILENAMES;
51: NAMELENGTH : out NATURAL) is

52: begin -- GET_FILE_NAME
53: PUT_PROMPT (PROMPT);
54: GET LINE (NAME, NAMELENGTH);
55: end GETFILENAME;
56:
57: function GET (PROMPT : STRING) return MEDIUM_INTEGER is

58:
59: RESPONSESTRING: RESPONSE := (others => BLANK);
60: LAST : NATURAL; -- Required by GETLINE.
61: VALUE : MEDIUM INTEGER;
62:
63: begin -- GET
64: loop
65: begin
66: PUTPROMPT (PROMPT);

67: GETLINE (RESPONSESTRING, LAST);
68: VALUE:=
69: MEDIUMINTEGER'VALUE (RESPONSE-STRING (1 .. LAST));
70: return VALUE;

71: exception
72: when others =>
73 PUT LINE ("Please enter an integer");
74: end;

75: end loop;
76: end GET:

77:
78: procedure DISPLAY_MENU (TITLE : in STRING;

79: OPTIONS in MENUS;
80: CHOICE : out ALPHANUMERICS)
81: is separate;
82:

83: procedure PAUSE (PROMPT: STRING) is
84: begin -- PAUSE

85: PUTLINE (PROMPT),

158 Ada QUALITY AND STYLE

86: PAUSE;
87: end PAUSE;
88:
89: procedure PAUSE is
90: BUFFER : RESPONSE;
91: LAST : NATURAL;
92: begin -- pause
93: PUT ("Press return to continue");
94: GETLINE (BUFFER, LAST);
95: end PAUSE;

96:
97: function GET (PROMPT : STRING) return MEDIUMFLOAT is
98:
99: VALUE: MEDIUMFLOAT;

100:
101: begin -- GET
102: loop
103: begin
104: PUTPROMPT (PROMPT);
105: MEDIUMFLOATIO.GET (VALUE);
106: SKIPLINE;
107: return VALUE;
108: exception
109: when others =>
110: SKIPLINE;
111: PUTLINE ("Please enter a real number")
112: end;
113: end loop;
114: end GET;
115:
116: procedure PUT (INTEGERVALUE : MEDIUM_INTEGER) is
117: begin -- PUT

118: MEDIUM_INTEGERIO.PUT (INTEGER_VALUE, WIDTH => 4);
119: end PUT;

120:
121: procedure PUT (REALVALUE : MEDIUMFLOAT) is

122: begin -- PUT
123: MEDIUM_FLOAT_IO.PUT (REALVALUE, FORE => 4. AFT => 3,
124: EXP => 0);
125: end PUT;
126:
127: procedure PUT (LABEL : STRING;
128: INTEGERVALUE : MEDIUMINTEGER) is
129: begin -- PUT
130: TEXTIO.PUT (LABEL);
131: MEDIUMINTEGER_IO.PUT (INTEGER_VALUE);
132: end PUT:
133:
134: procedure PUT (LABEL : STRING;
135: REALVALUE : MEDIUMFLOAT) is
136: begin -- PUT
137: TEXTIO.PUT (LABEL);
138: MEDIUMFLOAT_1O.PUT (REALVALUE, FORE => 4, AFT => 3,
139: EXP => 0);
140: end PUT;
141:
142: procedure PUT LINE (INTEGER_VALUE : MEDIUMINTEGER) is
143! begin -- PUT_LINE
144: TERMINAL_IO.PUT (INTEGER_VALUE):
145: TEXT_IO.NEWLINE;
146: end PUTLINE;
147:
148: procedure PUTLINE (REAL_VALUE : MEDIUMFLOAT) is
149: begin -- PUT_LINE
150: TERMINALIO.PUT (REALVALUE):
151: TEXTIO.NEWLINE:
152: end PUTLINE;

153:
154: procedure PUTLINE (LABEL : STRING;
155: INTEGERVALUE : MEDIUMINTEGER) is

156: begin -- PUTLINE
157: TERMINALIO.PUT (LABEL, INTEGER_VALUE);
158: TEXT IO,NEW LINE;
159: end PUTLINE;

COMPLETE EXAMPLE 159

160:
161: procedure PUTLINE (LABEL STRING;
162: REALVALUE MEDIUM_FLOAT) is
163: begin -- PUT_LINE
164: TERMINAL_ IO.PUT (LABEL, REAL_VALUE);
165: TEXTIO.NEWLINE;
166: end PUTLINE;
167:
168:
169:end TERMINAL_IO;
170:- --

FILE: terminal io displaymenu.a

1:- --
2:separate (TERMINAL_IO)
3:procedure DISPLAYMENU (TITLE : in STRING;

4: OPTIONS : in MENUS;
5: CHOICE : out ALPHANUMERICS) is
6:
7: LEFT COLUMN : constant := 15;
8: RIGHTCOLUMN : constant := 20;
9: PROMPT : constant STRING := "

10:
11: type ALPHA_ARRAY is array (ALPHANUMERICS) of BOOLEAN;
12:
13: VALID : BOOLEAN;
14: VALiDOPTION : ALPHA_ARRAY := (others => FALSE);

15:
16: procedure DRAWMENU (TITLE : STRING;
17: OPTIONS : MENUS) is
18: begin -- DRAW_MENU
19: NEWPAGE;
20: NEWLINE;
21: SETCOL (RIGHT_COLUMN);
22: PUT-LINE (TITLE);
23: NEWLINE;
24: for CHOICE in ALPHA_NUMERICS loop
25: if OPTIONS (CHOICE) /= EMPTYLINE then
26: VALID OPTION (CHOICE) := TRUE;
27: SETCOL (LEFTCOLUMN);
28: PUT (CHOICE & " -- ");
29: PUT LINE (OPTIONS (CHOICE));
30: end if;

31: end loop;
32: end DRAWMENU;
33:
34: procedure GET_RESPONSE (VALID : out BOOLEAN;
35: CHOICE : out ALPHA_NUMERICS) is
36:
37: BUFFERSIZE constant := 20;
38: DUMMY constant ALPHA_NUMERICS :=X';
39:
40: FIRSTCHAR CHARACTER;
41: BUFFER STRING (I .. BUFFER_SIZE);
42:
43: -- IMPLEMENTATION NOTE:
44: -- The following two declarations do not use
45: -- locally defined types because a variable of type
46: -- NATURAL is required by the TEXTIO routines for
47: -- strings, and there is no relational operator defined
48: -- for our local TINY_ MEDIUM_ or BIGPOSITIVE and
49: -- the standard type NATURAL.
50: LAST : NATURAL;
51: INDEX : POSITIVE;
52:
53: function UPPERCASE (CURRENT_CHAR : CHARACTER)
54: return CHARACTER is
55:
56: CASEDIFFERENCE : constant := 16#20#;
57:

58: begin -- UPPER_CASE
59: if CURRENTCHAR in 'a" "z" then
60: return CHARACTER'VAL (CHARACTER'POS (CURRENTCHAR)

160 Ada QUALITY AND STYLE

61: - CASE_DIFFERENCE):
82: else
63: return CURRENTCHAR;
64: end if;
65: end UPPERCASE;
66:
67: begin -- GET_RESPONSE
68:
69: NEWLINE;
70: SET_COL (LEFTCOLUMN);
71: PUT (PROMPT);
72:
73: GET_LINE (BUFFER, LAST);
74:
75: INDEX := POSITIVE'FIRST;
76: loop
77: exit when ((INDEX >= LAST) or else

78: (BUFFER (INDEX) in ALPHA_NUMERICS)
79: INDEX := POSITIVE'SUCC (INDEX);
80: end loop;
81:
82: FIRSTCHAR := UPPER_CASE (BUFFER (INDEX));
83:
84: if (FIRSTCHAR not in ALPHA_NUMERICS) or else
85: (not VALID_OPTION (FIRST_CHAR)) then
86: VALID := FALSE;
87: CHOICE := DUMMY;
88: else
89: VALID := TRUE;
90: CHOICE := FIRSTCHAR;
91: end if;
92:
93: end GETRESPONSE;
94:
95: procedure BEEP is
96: begin
97: PUT (ASCII.BEL);
98: end BEEP;
99:
l0:begin -- DISPLAY_MENU
101: loop
102: DRAWMENU (TITLE, OPTIONS);
103: GETRESPONSE (VALID, CHOICE);
104: exit when VALID;

105: BEEP;
106: end loop;

107:end DISPLAYMENU;
108:- --

COMPLETE EXAMPLE 161

FILE: example.a
1--

2:with SPCNUMERICTYPES,
3: TERMINAL_10;
4:--
5:procedure EXAMPLE is
8 :
7: package TIO renames TERMINAL_IO0
8 :
9: EXAMPLEMENU : constant TIO.MENUS

10: TIO.MENUS*('A' => "Add item
11: 'D' => "Delete item
12: M' => 'modify item
13: Q' => "Quit
14: others => TIO.EMPTYLINE);
15:
18: USERCHOICE :TIO.ALPHANUMERICS;
17: ITEM :SPCNUMERICTYPES.MEDIUMINTEGER;

1 8 : -- -
19:begin -- EXAMPLE
20:
21: loop
22: TIO.DISPLAYMENU ("Example Menu". EXAMPLEMENU.
23: USERCHOICE);
24:
25: case USERCHOICE is
26: when 'A' =>

27: ITEM :=TIOGCET (",Item to add");
28: when 'D' =>

29: ITEM :=TIOGCET (",Item to delete");
30; when 'M' =>
31: ITEM :=TIO.GET ("Item to modify",);
32: when 'Q' =>
33: exit;
34: when others => -- error has already been
35: null; - signaled to user
36: end case;
37 :
38: end loop;
3 9:
40:end EXAMPLE;
41;---
42 :
43;-- This is what is displayed, anything but A. D, M or Q beeps
44: --

45:-- Example Menu
46 --

47 -- A -- Add item
48:-- D -- Delete item
49:-- M -- Modify item
50:-- Q -- Quit
51:--
52:--

162 Ada QUALITY AND STYLE

APPENDIX A
Map from Ada Language Reference

Manual to Guidelines

1. Introduction

1.1 Scope of the Standard
1. 1. 1 Extent of the Standard
1. 1..2 Conformity of an Implementation with the Standard
1.2 Structure of the Standard
1.3 D esign G oals and Sources .. 2
1.4 Language Summary
1.5 Method of Description and Syntax Notation 2.1.2, 2.1.8, 2.1.9, 9.2, 9.4
1.6 Classification of Errors 5.9, 5.9.1, 5.9.3, 5.9.4, 5.9.5, 5.9.6, 7.1.6.

7.6.6, 7.6.7, 7.7.3

2. Lexical Elements

2 .1 C h a ra cte r S e t .
2.2 Lexical Elements, Separators, and Delimiters 2.1.1, 2.1.6, 2.1.9,

9.1, 9.5
2.3 Identifiers 3.1.1, 3.1.3, 3.1.4, 3.3.1, 3.2, 3.2.1, 3.2.2. 3.2.3, 3.2.4,

3.2.5, 5.1.1, 5.1.2, 5.2.1, 5.5.4, 8.1.1, 8.1.2, 9.6
2.4 N um eric Literals 3.1.2, 3.2.5, 7.2.6, 7.2.7, 9.5
2.4.1 D ecim al L iterals .. 3.1.2, 3.2.5, 9.5
2.4.2 Based L iterals .. 3.1.2, 3.2.5, 7.2.7, 9.5
2.5 Character Literals
2.6 String Literals
2.7 Com m ents 3.3.1, 3.3.2, 3.3.3, 5.2.1, 5.6.3, 5.6.3, 5.6.7,

5.6.8, 7.1.3, 7.1.5, 7.2.5, 8.2.1, 8.2.2, 8.2.5, 8.3.5, 9.7
2 8 P ra gm a s . 8 .4 .2
2.9 Reserved W ords ... 3.1.3, 9.6
2. 10 Allowable Replacements of Characters

3. Declarations and Types

3.1 D eclarations 2.1.4, 2.1.8, 3.4.1, 5.9.6, 7.2.8
3.2 Objects and Nam ed Num bers 2.1.4, 3.2.3, 7.2.6
3.2 1 Object Declarations ... 2.1.4, 3.2.3
3.2.2 N um ber D eclarations ... 2.1.4, 7.2.6

l3

164 Ada QUALITY AND STYLE

3.3 Types and Subtypes 3.2.2, 4.1.5, 5.3.1, 5.3.3, 5.5.1, 5.9.1, 7.1.2,
7.2.8, 7.7.4, 8.2

3.3.1 Type Declarations 2.1.4, 3.2.2, 3.4.1, 5.3.1, 5.3.2, 7.2.8

3.3.2 Subtype Declarations 3.4.1, 5.3.1, 5.5.1, 7.2.1, 7.2.8

3.3.3 Classification of Operations
3.4 D erived T ypes .. 3.4.1, 5.3.1, 7.2.8

3 .5 S calar T yp es 3 .4 .1

3.5.1 Enum eration Types ... 2.1.4, 3.4.2

3.5.2 Character Types

3.5.3 Boolean Types

3.5.4 Integer Types 5.3.2, 7.1.1, 7.1.2, 7.2.1, 9.13

3.5.5 Operations of Discrete Types

3.5.6 Real T yp es .. 7.1.1, 7.1.2, 9.13

3.5.7 Floating Point Types 5.3.2, 7.1.1, 7.1.2, 7.2.1, 7.2.2, 7.2.3, 9.13

3.5.8 Operations of Floating Point Types 7.2.2, 7.2.3, 7.2.10

3.5.9 Fixed Point Types 5.3.2, 7.1.1, 7.1.2, 7.2.1, 9.13

3.5.10 Operations of Fixed Point Types
3.6 Array Types 5.3.2, 5.5.1, 5.5.2, 5.6.2, 5.9.3, 7.3.1, 8.2.2, 8.3.4

3.6.1 Index Constraints and Discrete Ranges 5.5.1, 5.5.2, 5.6.2, 7.3.1

3.6.2 Operations of Array Types 5.5.1, 5.5.2, 5.6.2. 8.2.2

3.6.3 The Type String
3.7 Record Types 5.3.2, 5.4.1, 5.4.2, 5.9.3, 8.3.4, 9.2

3.7.1 D iscrim inants ... 5.4.1, 5.4.2, 7.3.1

3.7.2 D iscrim inant Constraints .. 5.4.1, 5.4.2, 7.3.1

3.7.3 V ariant Parts ... 5.4.1, 5.4.2, 9.2

3.7.4 Operations of Record Types .. 5.4.1, 5.4.2

3.8 Access Types 5.4.3, 5.9.2, 5.9.6, 6.1.2, 6.1.3, 6.2.3, 7.3.1, 7.3.2,
7.6.6, 7.7.4, 8.3.5

3.8.1 Incom plete Type Declarations .. 5.4.3

3.8.2 Operations of A ccess Types .. 5.4.3, 7.3.1

3.9 Declarative Parts

4. Names and Expressions

4 .1 N am es 3 .2, 3 .2 .1, 8 .1.1, 8 .1.2
4.1.1 Indexed Components
4 .1 .2 S lic e s .. 5 .6 .2

4.1.3 Selected Components
4 .1 .4 A ttrib u tes . 8 .2 .3

4 .2 L ite ra ls . 8 .2 .3

4 .3 A ggregates . 5 .2 .2, 9 .8

4 .3 .1 R ecord A ggregates .. 5.6.10

4.3.2 Array Aggregates
1.4 Expressions 2.1.1, 2.1.3, 4.1.3, 5.1.1, 5.5.3, 5.6.1. 7.1.6, 7.2.2.

7.2.8, 7.2.9, 7.2.11, 9.1, 9.12

4.5 Operators and Expression Evaluation 2.1.3, 5.3.1, 5.5.3, 5.5.5, 5.6.1,

5.7.2, 7.1.6, 7.2.2, 7.2.8, 7.2.9. 7.2.11, 9.12

4.5.1 Logical Operators and Short-circuit Control Forms 2.1.5. 5.5.4,
5.5.5, 5.6.5

4.5.2 Relational Operators and Membership Tests 5.5.4, 5.5.5. 5.5.7.

5.6.5, 7.2.9, 7.2.11

APPENDIX A 165

4.5.3 Binary Adding Operators

4.5.4 Unary Adding Operators
4.5.5 Multiplying Operators
4.5.6 Highest Precedence Operators 5.5.3, 5.6.1, 9.12
4.5.7 Accuracy of Operations with Real Operands 5.5.7, 7.1.2, 7.2.1, 7.2.2,

7.2.3, 7.2.4, 7.2.8
4.6 Type Conversions 5.3.1, 5.5.6, 5.9.1, 7.2.6, 7.2.8
4.7 Q ualified Expressions ... 5.5.6, 7.2.8

4.8 Allocators 5.4.3, 5.9.2, 5.9.6, 6.1.2, 6.1.3, 6.2.3, 7.3.1, 7.3.2, 7.6.6
4.9 Static Expressions and Static Subtypes 3.2.5, 5.3.1, 7.2.6

4.10 U niversal Expressions ... 7.2.6

5. Statements

5.1 Simple and Compound Statements - Sequences of Statements 2.1.2,
2.1.6, 2.1.8, 5.6.1, 9.2, 9.12

5.2 A ssignm ent Statem ent ... 2.1.3, 5.6.2, 5.6.10

5.2.1 A rray A ssignm ents ... 2.1.5
5.3 If Statem ents 2.1.5, 3.3.7, 5.6.1, 5.6.3, 5.6.5, 9.2, 9.12

5.4 Case Statem ents 3.3.7, 5.6.1, 5.6.3, 9.2, 9.12
5.5 Loop Statements 5.1.1, 5.1.3, 5.6.1, 5.6.2, 5.6.4, 5.6.5, 5.6.6, 6.2.5,

7.4.2, 9.2, 9.12

5.6 Block Statements 3.3.7, 5.1.2, 5.6.1, 5.6.9, 5.8.4, 6.3.2, 9.2, 9.12
5.7 Exit Statem ents 2.1.5, 5.1.1, 5.1.3, 5.6.4, 5.6.5, 5.6.6
5.8 Return Statem ents .. 5.6.8

5.9 G oto Statem ents ... 5.6.7, 9.2

6. Subprograms

6.1 Subprogram Declarations 2.1.5, 2.1.8, 3.2.4, 4.1.2, 4.1.5, 4.2.1, 4.2.4,
5.2.1, 5.2.5, 5.6.6, 5.6.8, 5.6.9, 5.8.4, 5.9.3,6.3.2, 7.1.3, 7.1.4, 8.2.2,

9.11
6.2 Formal Parameter M odes 2.1.5, 4.1.2, 5.2.1, 5.2.4, 5.9.3, 7.1.4

6.3 Subprogram Bodies 3.3.7, 4.1.2, 5.1.4, 7.1.3, 7.1.4,

9.2, 9.3
6.3.1 C onform ance Rules ... 5.9.3

6.3.2 Inline Expansion of Subprogram s ... 5.6.9

6.4 Subprogram Calls 5.2.2, 5.6.6, 5.9.3, 7.1.4, 8.2.2, 9.8

6.4.1 Parameter Associations 5.2.2, 5.9.3, 8.2, 8.2.1, 8.2.2, 9.8
6.4.2 Default Parameters 5.2.2, 5.2.3, 5.2.5, 5.6.6, 5.9.3, 9.8, 9.11

6.5 Function Subprograms 2.1.5, 3.2.4, 4.1.2, 4.1.3, 5.6.8, 5.9.3, 5.9.6

6.6 Parameter and Result Type Profile - Overloading of Subprograms 5.7.3,

5.9.3, 8.2, 8.2.4

6.7 O verloading of O perators .. 5.7.4, 8.2.4

7. Packages

7.i Package Structure 4.1.4, 4.1.5, 4.1.6, 4.2.1, 4.3.1, 7.1.3.

7.1.5, 8.3.1, 9.2
7.2 Package Specifications and Declarations 3.2.4, 4.1.1, 4.1.4,

4.1.5, 4.1.6, 4.2.1, 4.2.2, 4.2.4, 4.3.1, 5.1.4, 5.7.1, 5.7.2, 5.9.6,

7.1.3, 7.1.5, 8.3.1, 9.3

7.3 Package Bodies 3.3.7, 4.1.1, 4.1.4, 4.1.5, 4.1.6, 4.3.1,

166 Ada QUALITY AND STYLE

5.1.4, 7.1.3, 7.1.5, 8.3.1

7.4 Private Type and Deferred Constant Declarations 5.3.3
7.4 .1 Private T ypes .. 5.3.3, 7.2.1
7.4.2 O perations of a Private Type ... 5.3.3
7.4.3 Deferred Constants
7.4.4 Lim ited T ypes .. 5.3.3, 8.3.4, 8.3.5
7.5 Example of a Table Management Package
7.6 Example of a Text Handling Package

8. Visibility Rules

8.1 D eclarative Region .. 4.1.4, 4.1.6, 4.2.3
8.2 Scope of Declarations 4.1.4, 4.1.6, 4.2.3, 7.6.6
8.3 V isibility 2.1.8, 4.1.4, 4.1.6, 4.2.1, 4.2.3, 5.7.1
8.4 Use Clauses 2.1.8, 4.2.1, 4.2.3, 5.6.9, 5.7.1, 5.7.2, 9.3
8.5 Renam ing Declarations 3.4.1, 4.2.4, 5.6.9, 5.7.1, 5.7.2
8.6 T he Package Standard .. 7.2.1
8.7 The Context of Overload Resolution ... 4.1.6

9. Tasks

9.1 Task Specifications and Task Bodies 2.1.8, 3.3.7, 3.2.4,
4.1.1, 4.1.7, 4.2.4, 5.1.4, 5.3.2, 5.8.4, 6.1.3, 6.1.4, 6.1.1, 6.1.2, 6.3.2,

7.1.3, 8.2.5, 8.4.2, 9.2, 9.3
9.2 Task Types and Task Objects 4.1.7, 5.9.3, 6.1.1, 6.1.2, 6.1.3, 6.3.2
9.3 Task Execution - Task Activation 6.1.1, 6.1.4, 6.2.3, 6.3.2,

6.3.3, 7.4.1, 7.4.5
9.4 Task Dependence - Termination of Tasks 6.1.1, 6.1.4, 6.2.3, 6.3.1,

6.3.2, 6.3.3, 6.3.4, 7.4.1
9.5 Entries, Entry Calls, and Accept Statements 3.2.4, 4.1.7, 4.2.4,

5.1 4; 5) 1 5 ? 4. 5.2.5, 5.9.4, 6.1.1, 6.1.3, 6.1.4,6,1.5, 6.2.1, 6.2.2,

6.2.3, 6.2.4, 6.2.5, 6.2.6, 6.3.2, 6.3.3, 8.2, 9.2, 9.11
9.6 Delay Statements, Duration, and Time 4.1.7, 6,1.5, 6.3.2, 7.1.1,

7.4.2, 7.4.3, 9.13
9.7 Select Statem ents 6.1.5, 6.2.1, 6.2.5, 6.2.6, 6.3.2, 7.4.4
9.7.1 Selective W aits 6.1.5, 6.2.2, 6.2.3, 6.2.5, 6.3.2, 7.4.4, 9.2
9.7.2 C onditional Entry Calls ... 6.1.5, 6.2.5, 9.2
9.7.3 Tim ed Entry Calls ... 6.1.5, 6.2.3, 6.2.5. 9.2
9.8 Priorities 4.1.7, 6.1.1, 6.1.4, 6.1.5, 6.2.5, 7.4.5, 7.4.5
9.9 T ask and Entry A ttributes ... 7.3.1
9.10 A bort Statem ents ... 6.2.3, 6.3.3, 7.4.6
9 .11 Shared V ariables ... 6.2.4, 7.4.7
9 .12 E xam ple of T asking .. 4.1.7

10. Program Structure and Compilation Issues

10.1 Com pilation Units - Library Units 4.1.1, 4.1.4, 4.2.3, 5.7.1,

6.3.2, 7.1.4
10.1.1 Context Clauses - W ith Clauses 4.2.1, 4.2.3, 5.7.1, 8.4.1, 9.2, 9.3

10.1.2 Examples of Compilation Units
10.2 Subunits of Com pilation U nits 4.1.1, 4.2.3, 9.2
16.2.1 Examples of Subunits

10.3 Order of Compilation ... 4.2.3

APPENDIX A 167

10.4 The Program Library .. 8.1.1, 8.3.2, 8.4
10.5 Elaboration of Library Units
10.6 Program O ptim ization ... 8.4.4

11. Exceptions

11.1 Exception Declarations 4.3.1, 5.8.1, 7.5.3, 8.2

11.2 Exception Handlers 4.3.1, 5.6.9, 5.8.1, 5.8.2, 5.8.3,
5.8.4, 5.9.5. 5.9.6, 6.2.2, 6.2.3, 6.3.1, 6.3.4, 7.5.1, 7.5.2, 7.5.3, 8.2.7,

9.2
11.3 Raise Statem ents .. 4.3.1, 7.5.1, 7.5.3, 8.2
11.4 Exception Handling 4.3.1, 5.8.1, 5.8.2, 5.8.3, 5.8.4,

5.9.5, 5.9.6, 6.2.2, 6.2.3, 6.3.4, 7.5.1, 7.5.2, 7.5.3, 8.2.7
11.4.1 Exceptions Raised During the Execution of Statements 5.6.3, 5.8.1,

7.5.1

11.4.2 Exceptions Raised During the Elaboration of Declar3tions 5.8.1,
7.5.1

11.5 Exceptions Raised During Task Communication 5.8.1,
6.2.2, 7.5 1

1 1.6 Exceptions and Optimization
11.7 Suppressing C hecks ... 5.9.5, 8.2.7

12. Generic Units

12.1 Generic Declarations 2.1.8, 3.2.4, 4.2.2, 5.2.1, 8.2, 8.2.3,
8.3.1, 8.3.2, 8.3.4, 9.2, 9.3

12.1.1 Generic Formal Objects 2.1.8, 5.2.4, 8.2.3, 8.2.5, 8.3.2, 8.3.4, 8.4.1
12.1.2 Generic Form al Types 2.1.8, 8.2.5, 8.3.2, 8.3.4, 8.4.1
12.1.3 Generic Formal Subprograms 2 1.8, 8.2.3, 8.2.5, 8.2.6 8.3.2,

8.3.4, 8.4.1

12.2 G eneric Bodies ... 8.3.1, 8.3.3, 9.3
12.3 Generic Instantiation 3.2.4, 5.2.2, 8.1.1, 8.2, 8.2.2, 8.2.3, 8.2.4,

8.2.6, 8.3, 8.3.1, 8.3.2, 8.3.4, 8.4.1, 9.2, 9.8
12.3.1 Matching Rules for Formal Objects
12.3.2 M atching Rulbs for Formal Private Types 5.3.3
12.3.3 Matching Rulcs for Formal Scalar Types
12.3.4 Matching Rules for Formal Array Types
12.3.5 Matching Rules for Formal Access Types
12.3.6 Matching Rules for Formal Subprograms
12.4 Example of a Generic Package

13. Representation Clauses and Implementation-Dependent Features

13.1 Representation C lauses .. 7.1.5, 7.6.1
13.2 Length Clauses 5.4.3, 6.1.2, 7.1.5, 7.3.1, 7.3.2. 7.6.1
13.3 Enumeration Representation Clauses 3.4.2, 7.1.5, 7.6.1
13.4 Record Representation Clauses 7.1.5, 7.6.1. 9 1
13.5 A ddress C lauses .. 5.9.4, 7.1.5, 7.6.1

13.5.1 Interrupts .. 5.9 .4, 6.1.1, 7.4 .5, 7.6.1
13.6 Change of Representation ... 7.1.5, 7.6.1
13.7 The Package System ... 7.1.5, 7.4.3, 7.6.2
13.7.1 System-Dependent Named Numbers
13.7.2 Representation A ttributes .. 7.3.1. 7.3.2

168 Ada QUALITY AND STYLE

13.7.3 Representation Attributes of Real Types 7.2.2, 7.2.3. 7.2.4

13.8 M achine Code Insertions 7.1.5, 7.6.3

13.9 Interface to Other Languages 5.9.3, 7.1.5, 7.6.4, 7.6.7

13.10 Unchecked Program ming 5.9.1, 7.1.5, 7.6.6, 7.6.7

13.10.1 Unchecked Storage Deallocation 5.4.3, 5.9.2, 7.6.6

13.10.2 Unchecked Type Conversions .. 5.9.1, 7.6.7

14. Input-Output

14.1 External Files and File Objects 7.7.1, 7.7.3, 7.7.4

14.2 Sequential and Direct Files

14.2.1 File M anagem ent 7.7.2, 7.7.3

14.2.2 Sequential Input-O utput 7.7A
14.2.3 Specification of the Package Sequential_10

14.2.4 Direct Input-O utput 7.7.4

14.2.5 Specification of the Package Direct 10
14.3 T ext Input-O utput ... 4.2.2

14.3.1 F ile M anagem ent .. 7.7.3

14.3.2 Default Input and Output F,,es
14.3.3 Specification of Line and Page Lengths

14.3.4 Operations on Columns, Lines, and Pages

14.3.5 Get and Put Procedures

14.3.6 Input-Output of Characters and Strings

14.3.7 Input-Output for Integer Types

14.3.8 Input-Output for Real Types
14.3.9 Input-Output for Enumeration Types

14.3. 10 Specification of the Package Text_10 .. 4.2.2

14.4 Exceptions in Input-Output

14.5 Specification of the Package IO_Exceptions

14.6 Low Level Input-O utput .. 7.7.5

14.7 Example of Input-Output

Anne ,es

A. Predefined Language Attributes 3.2.5, 3.4.2, 5.3.3, 5.5.1, 5.5.2, 6.2.3,
7.2.10, 7.2.11, 7.3.1. 7.3.2

B. Predefined Language Pragmas 4.1.2, 4.1.4, 4.2.4. 5.4.3, 5.6.9, 5.9.5,

6.1.4, 6.2.4, 7.4.5, 7.4.7, 7.6.4

C. Predefined Language Environment 3.4.1, 5.4.3, 5.8.4, 5.9.6, 6.1.2

6.1.5, 6.2.2 7.1.1, 7.1.2, 7.2.1, 7.2.2, 7.2.4, 7.4.3, 7.5.1. 7.5.2, 9.11

Appendices

D. Glossary

E. Syntax Summary

F. Implementatinn-Dependent Characteristics 7.1.1, 7.1.2, 7.1.5, 7.2.1, 7.2.2,

7.2.4, 7.3.1, 7.3.2, 7.4.3, 7.5.3, 7.6.1, 7.6.2, 7.6.3, 7.6.4, 7.6.5, 7.7.1,

9.11

REFERENCES

Anderson, T and R.W Safe Programming. BIT (Tidscrift Nordisk for Informations
Witty behandling) 18:1-8.
1978

ARTEWG Catalogue of Ada Runtime Implementation Dependencies, draft
1986 version. Association for Computing Machinery, Special Interest Group

for Ada, Ada Run-Time Environments Working Group.

Barnes, J.G.P. Programming in Ada. third edition. Reading, MA.: Addison-Weslev.
1989

Booch, G. Software Components with Ada - Structures, Tools and Subsy-ems.
1987 Menlo Park, Ca.: The Benjamin/Cummings Publishing Company Inc.

Booch, G. Software Engineering with Ada. second edition. Menlo Park, CA: The
1987 Benjamin/Cummings Publishing Company, Inc.

Charrette, R.N. Software Engineering Environments Concepts and Technology.
1986. Intertext Publications Inc. New York: McGraw-Hill Inc.

Cohen, N.H. Ada as a Second Language. New York: McGraw-Hill Inc.

1986

Conti, R.A. Critical Run-Time Design Tradeoffs in an Ada Implementation.
1987 Proceedings of the Joint Ada Conference, Fifth National Conference

on Ada Technology and Washington Ada Symposium. pp. 486-495.

Department of Defense, Ada Reference Manual for the Ada Programming Languagc.

Joint Program Office. ANSI/MIL-STD- 1 81 5A.
1953.

Foreman, J. and Ada Adoption Handbook: A Program Manager's Guide. Version 1.0.
J (Joodenough CMU/SEI-87-TR-9 ESD-TR-87-1 10. Software Engineering Institute.

1I fq7

170 Ada QUALITY AND STYLE

MacLaren, L. Evolving Toward Ada in Real Time Systems. ACM Sigplan Notices.

1980 15(1i):146-155.

Matthews, E.R. Observations on the Portability of Ada I/O. ACM Ada Letters.

1987 VII(5):100-103.

Melliar-Smith, P.M. and Software Reliability: The Role of Programmed Exception Handling.

B. Randell ACM Sigplan Notices. 12(3):95-100.

1987

Mowday, B.L. and Ada Programming Standards. General Dynamics Data Systems Division

E. Normand Departmental Instruction 414.717.

1986

NASA Ada Style Guide. Version 1.1, SEL-87-002. Goddard Space Flight

1987 Center: Greenbelt, MD 20771.

Nissen, J. and P. Wallis Portability and Style in Ada. Cambridge University Press.

1984

Pappas, F. Ada Portability Guidelines. DTIC/NTIS #AD-A160 390.

1985

Pyle, I.C. The Ada Programming Language. second edition. UK.: Prentice-Hall

1985 International.

Rosen, J. P. In Defense of the 'Use' Clause. ACM A4a Letters. VII(7):77-81.

1987

Schneiderman, B. Empirical Studies of Programmers: The Territory, Paths and

1986 Destinations. Empirical Studies of Programmers. ed E. Soloway and

S. Iyengar. pp. 1-12. Norwood, NJ: Ablex Publishing Corp.

Soloway, E., J. Pinto, Studying Software Documentation From A Cognitive Perspective: A

S. Fertig, S. Letovsky, Status Report. Proceedings of the Elevenri Annual Software

R. Lampert. D. Littman, Engineering Workshop. Report SEL-86-006, Software Engineering

and K. Ewing. Laboratory Greenbelt, Maryland:NASA Goddard Space Flight Center.

1986.

St.Dennis. R. A Guidebook for Writing Reusable Source Code in Ada -Version 1. 1.

1986 Report CSC-86-3:8213. Golden Valley, Minnesota: Honeywell

Corporate Systems Development Division.

REFERENCES 171

United Technologies CENC Programmer's Guide. Appendix A Ada Programming

1987 Standards.

Volz, R.A., Mudge, Naylor Some Problems in Distributing Real-time Ada Programs Across

and Mayer. Machines. Ada in Use, Proceedings of the Ada International

1985 Conference. pp. 14-16. Paris.

BIBLIOGRAPHY

ACVC (Ada Compiler Validation Capability). Ada Validation Facility, ASD/SIOL. Wright-Patterson Air
Force Base, OH.

Anderson, T. and R. W. Witty. 1978. Safe Programming. BIT (Tidscrift Nordisk for Informations
behandling) 18:1-8.

ARTEWG. November 5, 1986. Catalogue of Ada Runtime Implementation Dependencies, draft version.
Association for Computing Machinery, Special Interest Group for Ada, Ada Run-Time
Environments Working Group.

Bardin, Thompson. Jan-Feb 1988. Composable Ada Software Components and the Re-Export Paradigm.
ACM4 Ada Letters. VIII(1):58-79.

Bardin, Thompson. March-April 1988. Using the Re-Export Paradigm to Build Composable Ada Software
Components. ACM Ada Letters. VIII(2):39-54.

Barnes, J. G. P. 1989. Programming in Ada. third edition. Reading, MA.: Addison-Wesley.

Booch, G. 1987. Software Components with Ada - Structures, Tools and Subsystems. Menlo Park, CA.:
The Benjamin/Cummings Publishing Company, Inc.

Booch, G. 1987. Software Engineering with Ada. second edition. Menlo Park, CA: The
Benjamin/Cummings Publishing Company, Inc.

Brooks, F. B. 1975. The Mythical Man-P'-nth. Essays on Software Engineering. Reading,
MA: Ad6ison-Wesley.

Charrette, R. N. 1986. Software Ei,?incering Environments Concepts and Technology. Intertext
Publications Inc. New York: McGraw-Hill Inc.

Cohen, N. H. 1986. Ada as a Second Language. New York: McGraw-Hill Inc.

Conti, R. A. March 1987. Critical Run-Time Design Tradeoffs in an Ada Implementation. Proceedings of
the Joint Ada Conference, Fifth National Conference on Ada Technology and Washington Ada
Symposium. pp. 486-495.

Cristian, F. March 1984. Correct and Robust Programs. IEEE Transactions on Software Engineering.
SE-10(2): 163-174.

Department of Defense, Ada Joint Program Office. 1984. Rati,,nalefor the Design of the Ada Programming
Language.

Department of Defense, Ada Joint Program Office. January 1983. Reference Manual for the Ada
Programming Language. ANSI/MIL-STD- 1815A.

1-2

BIBLIOGRAPHY 173

Foreman, J. and J. Goodenough. May 1987. Ada Adoption Handbook: A Program Manager's Guide.
Version 1.0, CMU/SEI-87-TR-9 ESD-TR-87-110. Software Engineering Institute.

Gary, B. and D. Pokrass. 1985, Understanding Ada A Software Engineering Approach. John Wiley & Sons.

Goodenough, J. B. March 1986. A Sample of Ada Programmer Errors. Unpublished draft resident in the
Ada Repository under file name PD2: <ADA. EDUCATION>PROGERRS. DOC. 2.

Herr, C. S. August 1987. Compiler Validation and Reusable Software. St. Louis: a Report from the CAMP
Project, McDonnell Douglas Astronautics Company.

International Workshop on Real-Time Ada Issues. 1987. ACM Ada Letters. VII(6). Mortonhampstead,
Devon, U.K.

International Workshop on Real-Time Ada Issues II. 1988. ACM Ada Letters. VIII(6). Mortonhampstead,
Devon, U.K.

Kernighan, B. and P. J. Plauger, 1978. The Elements of Programming Style. New York: McGraw-Hiil. Inc.

Matthews, E. R. September, October 1987. Observations on the Portability of Ada I/O. ACM Ada Letters.
VII(5):100-103.

MacLaren, L. November 1980. Evolving Toward Ada in Real Time Systems. ACM Sigplan Notices.
15(11):146-155.

Melliar-Smith, P. M. and B. Randell. March 1987. Software Reliability: The Role of Programmed
Exception Handling. ACM Sigplan Notices. 12(3):95-100

Mowday, B. L. and E. Normand. November 1986. Ada Progr mring Standards. General Dynamics Data
Systems Division Departmental Instruction 414.717.

NASA. May 1987. Ada Style Guide. Version 1.1, SEL-87-002. Goddard Space Flight Center: Greenbelt,
MD 20771.

Nissen, J. C. D., P. Wallis, B. A., Wichmann, et al. 1982. Ada-Europe Guidelines for the Portability of Ada
Programs. ACM Ada Letters. I(3):44-61.

Nissen, J. and P. Wallis. 1984. Portability and Style in Ada. Cambridge University Press.

Pappas, F. March 1985. Ada Portability Guidelines. DTIC/NTIS #AD-A160 390.

Pyle, I. C. 1985. The Ada Programming Language. second edition. UK:Prentice-Hall International.

Rosen, J. P. November, December 1987. In Defense of the 'Use' Clause. ACM Ada Letters. VlI 7):77-81.

Ross, D. March-April 1989. The Form of a Passive Ite- ,or. ACM Ada Letters. IX(2):102-105.

Rymer, J. and T. McKeever. September 1986. The FSD Ada Style Guide. IBM Federal Systems Division
Ada Coordinating Group.

Schneiderman, B. 1986. Emp.rical Studies of Programmers: The Territory, Paths and Destinations.
Empirical Studies of Programmers. ed. E. Soloway and S. Iyengar. pp. 1-: 2. Norw4ood, NJ: Ablex
Publishing Corp.

SofTech Inc. December 1985. [SEC Reusability Guidelines. Report 3285-4-247/i2. also US ArmN
Information Systems Fngijeering Command, Waltham MA.

Solo'ay, E., J. Pinto, S. Fertig, S. Letovsky, R. Lampert, D. Littman, K. Ewing. December 1986. Studying
Software Documentation From A Cognitive Perspective: A Status Report. Proceedings of the
Eleventh Annual Software Engineering Workshop. Report SEL-S6-006. Software Engineering
Laboratory. Greenbelt, Maryland:NASA Goddard Space Flight Center

174 Ada QUALITY AND STYLE

Stark M. and E. Seidewitz. March 1987. Towards A General Object-Oriented Ada Lifecycle. In
Proceedings of the Joint Ada Conference, Fifth National Conference on Ada Technology and
Washington Ada Symposium. 213-222.

St.Dennis, R. May 1986. A Guidebook for Writing Reusable Source Code in Ada -Version 1.1. Report
CSC-86-3:8213. Golden Valley, Minnesota: Honeywell Corporate Systems Development Division.

United Technologies. February 9, 1987. CENC Programmer's Guide. Appendix A Ada Programming
Standards.

VanNeste, K.F. January/February 1986. Ada Coding Standards and Conventions. ACM Ada Letters.
VI(1):41-48.

Volz, R. A., Mudge, Naylor and Mayer. May 1985. Some Problems in Distributing Real-time Ada Programs
Across Machines. Ada in Use, Proceedings of the Ada International Conference. pp. 14-16. Paris.

Symbols acronym, 19

actual parameter. 59. 62, 150
'ADDRESS, 63 adaptation, 123, 125, 130

'BASE, 63 address clause, 83

'CALLABLE, 96 aggregate, 59, 76

'CONSTRAINED, 63 algorithms, 131

'COUNT 96 alias, 65, 91, 102

'FIRST 66, 67 alignment

'IMAGE, 36 and nesting, 70

'LAST 66, 67 declaration, 10
operator, 9

'LENGTH, 67 parameter, 11, 148

'POS, 36 record, 6, 146
source text, 5

'PRED. 23. 36 vertical, 5, 9, 10, 11, 148

'RANGE. 66, 67 allocation, 96

'SIZE, 63, 112 task, 91

'SMALL, 106, 112, 151 allocator, 65, 91

'SUCC, 23, 36 alternative
delay, 95, 98

TlERMINATED, 96 select, 114

'VAL, 36 terminate, 95, 101

'VALUE, 36 anonymous
task type, 90
type, 62, 65, 90

A array
constrained, 66

abbreviation, 17, 19, 78. 124 parallel, 64

abbreviations, 124 size. 109
slices, 71

abort type, 82
statement, 96. 102, 114 unconstrained, 62, 112, 125
task. 91 use of attributes with, 66. 67

abstract arrays, 134
data objects, 132 assignment
data types, 132 private types, 63

abstract data type. 43 statement, 71, 76, 84

abstraction, 20, 21, 41, 42. 47, 50, 58, 63, 64, 76, 80, assumptions, 125. 126, 130
81. 89. 124, 130 global, 151

accept, statement, 94, 101 asynchronous

accept statement, 6. 57, 91, 93. 95, 100, 146 attribute value change, 96
control. 89

access interrupt, 114
collection size. 116 programs, 89
synchronization, 89 attribute
task. 90, 91. 96 'ADDRESS. 63
type. 82, 84. 112, 113, 117, 120 'BASE, 63
variable, 65 'CALLABLE. 96

accuraq, 17. 110. 111 'CONSTRAINED. 63

'COUNT, 96 C
'FIRST 66, 67
'IMAGE, 36 CALENDAR, 114
'LAST 66. 67
'LENGTH. 67 conditional entry, 6, 48, 98, 146
'PRED. 23, 36 default parameters in, 59
'RANGE 66,. 67 entry, 6, 48, 59, 91, 96, 98, 146, 150
'SIZE, 63, 112 exception propagation through, 79
'SMALL, 106, 112, 151 function, 59, 84, 150
'SUCC, 23, 36 procedure, 59, 150
TERMINATED, 96 subprogram, 59, 150
TERIA. 36 timed entry, 6, 48, 96, 98, 146'VAL. 36

'VALUE, 36 capitalization, 17, 18, 149

implementation-defined, 117 case
numeric, 109 lower, 17, 18, 149

attributes, 127 statement, 6, 34. 70, 71, 75, 146
upper, 17, 18, 149

automation. 5 category, 20

clause
ajdress, 83

B cr,i. text, 6. 14, 45, 47. 77, 78, 146, 148
lengin. 65

based literals. 111 renames, 19, 77, 78
representation. 36. 112. 113, 116

binary operator. 5. 145 use. 77, 78

blank lines. 12 with, 47. 77

code, structure, 17, 24. 34blank space, 75
collection size. 112

blockindentation, 6. 146 comment. 17, 24, 126, 128, 135

localizing cause of exception. 81 describing data. 30
localizing scope of use clause, 77 describing exceptions. 30moalikin copmenfo.3 describing statements. 33

marker comment for, 34 header, 25, 149
name, 34, 56. 70 highlighting, 9. 24. 48. 75. 101. 102, 107. 153
nesting. 56 marker, 34. 71
statement. 76 obviated by constants. 23

blocked. 48. 92, 93 obviated by naming. 19, 55. 56. 58
program unit body header. 28, 150

body program unit specification header, 26. 149
comments in. 28. 150 removal before delivery. 80
function. 57, 77. 81. 84 communication. 94, 97, 100
package. 57, 77. 84
procedure. 57. 77, 81, 84 compilation
stubs. 6. 146 conditional. 142
subprogram. 57. 77. 81. 84 context. 47. 77

task. 57, 81. 84, 102 separate. 41, 153

Booch parts, 141 component
aggregate. 59

bounds association. 58
loop. 74 record, 65
recursion, 74 comtpound

busy wait, 93. 98. 113 name. 17

statement, 14, 57 copyright notice, 25, 149

concurrent, 137 coupling, 140, 141
access, 128 cyclic executive, 101, 114
algorithms, 89
programming, 89. 94. 113

condition D
continuation, 72
exception, 100 dangling references, 65

termination, 72 data

conditional comments describing, 30

compilation, 142 coupling, 44

entry call, 6, 48, 96, 98, 146 dynamic, 65

expression, 34, 70, 112 static, 65

statement, 142 structure, 20, 64, 65. 112, 134, 135, 142
structures, 128

configuration control, 43 type, 132

constant. 23 types. 131

as actual parameters to main program, 107 dead code, 142
examples. 153 deadlock. 48, 89
expression. 125, 142
in aggregate initializations, 59. 150 declarationsymbolic, 125 alignment. 10

automatic change. 125
constraint, 36, 6 . 82, 109 constant, 23
constraint checking is, 127 digits, 109

chekRIN Eexception. 50

CONSTRAINT_ERROR. 115 function call in. 84

context grouping, 43

clause, 6. 14, 45, 47, 77. 78, 146. 148 hiding, 78

compilation, 47, 77 minimization, 45

dependency, 45 name, 50

of exceptions, 50 named number, 23

to shorten names, 19 number per line. 14

unchecked conversion, 82 numeric, 110
parameter, 60, 151

context clauses, 140 range, 109

continuation record, 64. 84

condition. 72 renames, 19. 77, 78

line, 6, 146 spacing, 12
task. 76, 90

control type, 20, 36, 110
expression. 72 within blocks, 76
flow. 79 default
nesting, 19, 70. 151 initialization. 84
short circuit, 73, 153
structure, 6. 19. 79, 1 parameter, 59. 60
synchronization, 89 delay, 101
thread of. 89 alternative. 95, 98

interval, 93
CONTROLLED, 65 statement. 93. 113
conversion delimiter. 5. 145

explicit. 63
numeric. 17 dependencies. 141
type. 61, 69. 82. I1, 118 dependency
unchecked, 82 context. 45

implementation. 98 entry call
task, 101. 102. 114 conditional. 6, 48, 96. 98, 146

derived type, 36, 61. 111 timed, 6, 48, 96, 98, 146

enumeration
design literal, 10, 77

concurrent, 89 type, 36
document, 24
impact of typing, 36 equality, tests for, 63

impact on nesting, 70 erroneous execution, 81, 82, 84, 117
principles, 123
reusable part. 142 exception, 50. 79
sequential, 89 avoiding, 130cause, 81

digits declaration, 109 check, 84

discriminant, 63. 112 condition, 100
CONSTRAINTERROR, 115

documentation, 20, 24, 50. 71. 101, 107, 108, 110, declaration, 50
116. 118. 124, 142 export, 125

drift, time. 93 handler, 41, 50, 76. 80, 81, 95, 100, 102, 115, 129,
153

dropped pointer, 91 implementation--defined, 81, 115

DURATION, 106. 114, 151 name, 50
NUMERICERROR, 115

dynamic others, 102
allocation, 82, 113 predefined, 81, 115
data, 65 PROGRAMERROR, 81,95
storage. 112, 113 propagation, 50. 81. 84, 95, 129
task, 90, 91, 96 propogation, 129

raise, 50, 71, 84, 115, 125, 129
STORAGEERROR, 65

E suppress, 84
TASKINGERROR, 91,95,96

ELABORATE. 84 user-defined. 81

elaboration, 23, 84 exceptions, 50, 129

else, part. 101 exceptions,, 30

else part. 95. 98 exit
entry, 101

elsif. 70 statement, 57, 72, 73, 153

embedded system, 106, 107. 109, 118, 119 export. 128

encapsulation, 41. 43, 77. 108, 116, 153 expression, 66

end. name. 57 alignment, 9, 11
as actual parameter, 59, 150

entry conditional, 34, 70, 112
attribute. 96 constant, 125, 142
call. 6. 48. 59. 91, 96, 98, 146. 150 control. 72
default parameter. 59 function calls in. 43
hiding, 48 nesting, 70. 151
interrupt, 83. 116 numenc, 109
minimizing number of. 1() order dependency within, 108

name. 148 parenthesizing, 67
name selection. 21 qualified. 69
parameter. 58. 60 relational, 68, 69

queue. 96 spacing. 5. 145

task. 83. 91 static. 23

universalreal, 111 G

Fgarbage collection, 65, 81, 82, 112, 120
F generic

fault, 79, 81 aid to adaption, 130
formal, 134

file formal objects, 127
close, 81, 119 formal parameters, 128, 131, 141
header, 25, 149, 153 formal subprograms, 129
naming conventions, 41 function, 130, 131, 132, 140
organization, 41 instantiation, 6, 59, 124, 125, 127, 128, 129, 130,
temporary, 119 131, 134, 141, 146, 150

fixed point names of units, 21

number, 69 package, 47, 50, 128, 130, 131, 132, 140

precision, 106, 151 parameter, 6, 130, 131, 132, 140, 141, 146precsion 106 151parameters, 140

floating point pragma in, 141
arithmetic, 110 procedure, 130. 131, 132, 140
model, 110 specifications, 127
number, 69 subprogram, 130, 131, 132, 140
precision, 106, 110, 151 unit, 59, 123, 130, 131, 132, 140, 141
type, 107, 110 generics, 127, 130, 131, 132

flow of control, 79 instantiation, 130

for loop. 6, 72, 74, 146 goto statement, 75

foreign languages, 64, 81, 82, 117, 118 guard, 95, 96, 114

FORM, 119

formal parameter, 59, 150 H
name, 58, 150
type matching, 62, 125 handler

formatter, 5, 6. 9, 11, 12, 13, 14, 15, 17, 18, 145 exception, 50, 76, 79, 80, 81, 95, 102, 115, 129. 153

declaration, 10 others. 50, 80
STORAGEERROR, 65

fraction, 17 headers, file, 25, 149, 153

function
and anonymous types, 63 hiding
body, 57, 77, 81 84 declarations, 78

call, 59, 84, 150 tasks, 48
default parameter, 59 highlighting, comment, 9, 24, 48. 75, 101. 102, 107,
example, 153 153
generic. 130. 131, 132, 140 horizontal spacing, 5, 145
INLINE, 76
naming, 21
overload, 78
parameter, 107
parameter list. 58 identifier, 17, 19, 124
procedure versus. 43 abbreviation, 19, 124
recursive calls, 74 constant, 23
relation to nesting, 70 number, 23
return, 75 object. 20
side effect, 43 reusable part, 124
specification. 6, 146 spelling, 17, 18, 149

functional cohesion. 44 type, 20

visibility, 45 J

identifiers, 124

if statement, 34, 70, 71, 153

implementation, comments describing, 28, 150

implementation dependency, 82, 98, 108, 112, 113, L
115, 117, 118, 119, 120 label, 6, 75, 146

implementation-defined exception, 81 length, line, 14

import. 140 length clause, 65

indentation, 5, 6, 145, 146 library
of declarations, 10 package, 77
of nested statements, 19, 70 packages, 101
of pagination markers, 148 reuse, 78
of parameter specifications, 148 unit, 41, 43, 45, 47, 77, 84, 101

inequality, tests for, 63 limited private type. 61, 63, 134, 137, 138

infinite loop, 74, 102 line
infix operator, 77, 78 blank, 12

continuation, 6, 146

information hiding, 41, 43, 48, 50, 63, 77, 123, 130. length, 5, 14, 148
135, 137 statements per, 14

initialization. 130 linear independence, 23, 125

abstraction, 130 literal
aggregate, 59 based, 111
default. 84 enumeration, 10, 77
function calls in, 84 example, 153
in declaration, 10 in aggregates, 59, 150
mandatory, 84 linear independence of, 23

INLINE, 42, 43, 48, 76 numeric, 66, 67, 111, 149
spelling, 17

input/output, 119, 120 string, 5, 145

instantiation, generic, 21, 59, 125, 130, 150 local renames, 76

INTERFACE, 117 logical operator. 68

interface loop

comments describing, 26, 149 bounds, 74

foreign languages, 64, 82, 117, 118 busy wait, 93, 98

minimizing, 45 condition, 73

package. 36, 115, 117 exit, 69, 73
for, 72, 74

interrupt indentation, 6, 146
access to, 89 infinite, 74, 101, 102
asynchronous. 114 invariant, 72
entry, 83, 116 name. 55, 57, 70

interval, delay. 93 nesting, 55, 57. 153
range. 109

iteration. 72. 74 statement, 69

iterator. 135 substituting slices, 71
while, 6, 72, 146

iterators LOW LEVEL 10, 120
active. 135 LW-

passive. 135 lower case, 17. 18, 149

M qualified, 19, 47, 76, 77, 78
reusable, 124

machine code, 116 simple, 77
subprogram, 34, 148

machine dependency, 43, 116, 149 subtype, 36

main subprogram task, 34, 90, 91

handler for others, 80 type, 20, 36

relationship to tasks, 89 named, number, 23, 111
termination, 81, 101 named association, 45, 150

maintenance, 10, 23, 24, 25, 26, 28, 30, 33, 41, 44, component, 59
45, 47, 55, 59, 64, 66, 70, 78, 84, 89, 123, 130, parameter, 59
131, 137, 149, 150 names, 124

management, 18, 151 nesting

marker comment, 34, 71 block, 56

mathematical application, 109 control structure, 19, 70, 151

membership test, 63 expression, 70, 151
loop, 55, 57, 153

memory management, 65, 81, 82 package, 47

mode
specification, 47

indication, 60 non-interference, 97

parameter, 11, 60, 148 non-terminating task, 101

model nonterminating, tasks, 101
floating point, 110
interval, 111 normal termination, 101

numbers, 112 number
tasking, 89 fixed point, 69

modularity, 6, 43 floating point, 69
named, 23

multiprocessor architecture, 45, 89 representation, 17, 149

mutual exclusion, 92, 97 numeric
conversion, 17
declaration, 110

N encoding, 36
expression, 109

NAME, 119 literal, 66, 67, 111, 149

name, 19, 21 precision, 109, 110, 151

abbreviation, 19, 124 representation. 110

block, 34, 56, 70 type, 109, 110

capitalization, 18 NUMERICERROR, 115

component, 59
compound, 17
declaration, 50 0
end, 57
entry, 148 object
exception, 50 dynamically allocated, 82
formal parameter, 58 identifier, 20
loop. 55. 57, 70 initialization, 84
number, 23 name, 20
object, 20, 36, 68 operation, 26, 28, 36, 45, 61. 82, 130, 149, 150
package, 34. 78
parameter. 58, 148 operator

predefined, 36 alignment, 9

binary, 5, 145 package body, comments in, 28, 150
infix, 77, 78 pagination, 5, 13, 34, 148, 153
logical, 68
overload, 79 paragrphing, 6,
precedence, 9, 67, 70 parameter
relational, 77, 112 actual, 59, 62, 17 , 129, 150
short circuit, 68, 73, 153 alignment, 11, 148
unary, 5, 145 array, 82

optional parameter, 59, 150, 151 association, 59
declaration, 14, 60, 151

order iuependency, 43 default, 60
default value, 59

others description, 26, 149
and abstractions, 50 entry, 60
case, 71 FORM, 119
exception, 102 formal, 59, 62, 125, 150
handler, 50, 80 function, 107

overload generic, 6, 130, 131, 132, 140, 141, 146

function, -'6 mode, 11, 60, 148

operator, 79 NAME, 119

procedure, 78 name, 58, 14Q
subprogram, 78. 153 1amed associition, 150

type, 36 number, 45
optional, 59, 151

o~erloadtng, 128, 131 order, 79
passing mechanism, 129
procedure. 60, 107

p record, 82
size, 125

package, 43 specification, 148

body, 57, 77, 84 parameter list

CALENDAR, 114 entry, 58
c ,mmc its in. 26, 34, 107, 149 formal, 59

constant, w7 function, 58

zoupling, 44 named association, 59

documenting non-portable. 107 procedure, 58

example, 153 subprogram, 58

exceptions raised in, 50 parameters, 127, 129, 134
generic, 47, 50, 130, 131, 132, 140 by reference, 129
grouping subprograms i., 41, 43, 44 by value, 129
interface, 36. 82, 108, 115, 117, 119 formal, 125
library, 77 types, 127
LOW_LEVEL_10. 120 parentheses, 5. 11, 67. 145
minimizing interfaces, 45 parts, 51 4
name, 78 parts, 130

naming, 21 performance, 124, 142
nested. 47 periodic activity, 93.94
predefined, 119, 120
reusable. 123 pointer, dropped, 65, 82, 91, 137

separate compilation. 41 polling, 93, 113
specification. 6, 13, 45, 47, 48, 50, 57. 146, 148 polg , 93 , 13STANDARD. 36, 10 portable. 14, 43. 93, 105, 106. 108, 109, 110.
SSTND , 109 112, 113, 114, 115, 116, 117, 118, 119. 120. 123
SYSTEM, 114. 116
TF X-T_10, 47 pragma

user. 63 CONTROLLED, 65

ELABORATE, 84 structure, 9, 18, 50, 123
elaborate, 141 termination, 81, 119
implementation-defined, 117 unit, 6, 13, 21, 43, 47, 83. 146, 148
in generic, 141 PROGRAMERROR, 81, 95
INLINE, 42, 43, 48, 76
INTERFACE, 117 propagation, exception, 81, 84, 95, 129
PRIORITY, 92, 114
priority, 141
SHARED, 97, 114, 115 a
SUPPRESS. 84

pragmas, 141 qualified
expression, 69

precedence, operator, 9, 67, 70 name, 19, 47, 76, 77, 78

precision queue, entry, 92, 96
actual, 107
fixed point, 106, 151
floating point, 106, 110, 151 R
numeric, 109. 110

predefined race condition, 48, 98

exception. 81, 115 radix, 17, 111
package. 119. 120 raise, exception, 50, 80, 81, 115, 125, 129
type, 36, 66, 67. 109

range
preemption. 114 constraint, 61

PRIORITY, 92, 114 declaration, 109
discrete, 109

priority. 89, 92 DURATION, 106, 151
and delays, 93 loop, 109
and tentative rendezvous, 98 scalar types, 36
for portable scheduling. 114 values, 66
for synchronization, 89
inversion, 92 ranges, 127

private type, 61, 63, 109, 138 real-time, 101, 107, 114, 116, 118, 120

procedure record, 64
procdurealignment, 6, 146

and anonymous types. 63 component, 65

body. 57, 77, 81, 84 declaration, 84

call, 59, 150 defat, 84

default parameter, 59 discriminated, 65, 112

generic, 130, 131, 132, 140 indentation, 6, 146

INLINE, 76 structure, 65
naming, 21 type, 82, 84
overload, 78
parameter, 60. 107 records, 134
parameter list. 58 recursion bounds, 74
recursive calls, 74 relational
relation to nesting, 70 expression, 68, 69
return, 75 ereso, 6, 69
versus function, 43 operator, 77, 112

renames
proces9r clause, 19, 77. 78

resource, 93, 102 declaration, 19, 77, 78
virtual, 89 local, 76

program subprogram, 78
asynchronous, 89 type, 36

rendezvous, 94 short circuit
exceptions during, 95 control, 73, 153
for synchronization, 89, 114 operator, 68, 73, 153
tentative, 98 side effect, 43, 68
versus shared variables, 97, 115 simplk name, 77

representation simple statement, 14
clause, 36, 112, 113, 116
numeric, 110 simplification heuristics. 70

storage, 90 slice, 71

reserved word, 6, 18, 148, 149 source text, 5

response time, 94 spacing, 5
blank, 75

return horizontal, 5, 145
from subprograms, 9ifunction, 75 specification
procedure, 75 comments in, 26, 149statement, 75 function, 6, 146subprogram, 75 package, 6, 13, 45, 47, 48, 50, 57, 146. 148

parameter, 148
reuse, 43, 59, 61, 64, 70, 78, 101, 123, 124, 125, 129, reusable part families, 141

130, 131, 132, 135, 138, 140, 141, 142 task, 6, 48, 57, 146
families, 141 spelling, 17, 19
library, 78, 123, 124, 131, 140
parts, 123, 124, 129, 130, 135, 140, 141, 142 stack space, 113

robust software, 125 staements, comments describing, 33

robustness, 125 STANDARD, 36, 109

starvation, 48, 89

statement, 70

S abort, 96, 102, 114
accept, 6, 57, 91, 93, 95, 100, 146

safe numbers, 110 assignment, 71. 84
block, 76

safe programming, 74 case, 6, 34, 70, 71, 75, 146

scheduling, 93, 101, 114 compound, 14, 57
conditional, 142

scientific notation, 17, 149 delay, 93, 113
exit, 57, 72, 73, 153

scope goto, 75
access type, 117 if, 34, 70, 153
exception name, 50 indentation, 6, 146
minimizing, 47 list, 6, 84, 146
nesting, 70 loop, 69
use clause, 77 number per line, 14

select return, 75

alternative, 114 select, 6, 93, 95, 96, 98, 100, 101, 114, 146

statement, 6. 93, 94, 95, 96, 98, 100, 101, 114, 146 simple, 14

selected component, 63 static
data, 65

sentinel value, 61 expression, 23

separate compilation, 41, 153 storage, 112
task. 90

SHARED, 97, 114, 115 storage

shared variable, 97, 115 dynamic. 112, 113

representation clause, 90 synchronization. 89, 92. 97, 102
task. 113 SYSTEM, 114, 116
task size, 116

STORAGEERROR, 65

strong typing. 36. 41, 61, 118. 120, 125. 127. 131 T
structure tab character, 6, 146

code, 17, 24, 34
control, 6, 19, 79, 146 taskb, 89, 113
data, 20, 65, 112, 135, 142 abort, 91
program. 9, 18 access 90.r91, 196
proper, 41 activation order, 113record, 65 allocation, 91
reusable code. 142 anonymous, 90
reusable part 130. 142 attribute, 96
subunit, 41 body, 41, 57, 81, 84, 102

comments in, 34
subexpression, 61, 67. 111 communication, 48, 94, 95, 115

subprogram, 42 declaration, 76, 90
and anonymous types, 63 dependency, 101, 102, 114
bndnod y mous 57,, documenting non-portable, 107
body, 57. 77, 81, 84 dynamic, 90, 91, 96
comments in. 34 entry, 43, 48, 83, 100commets i. 34execution interleaving, 114
default parameter, 59 fast interrupt, 117
documenting non-portable. 107 group i n packages 41
example, 153 hiding, 48
exceptions raised in, 50 model, 89
generic, 130, 131, 132, 140 name, 91
grouping in packages, 41, 44 named, 90
hiding task entries, 48 naming, 21
INLINE, 76 non-terminating, 101
main. 80, 81, 89, 107 scheduling, 101, 114
name, 148 specification, 6. 48, 57, 146
naming, 21 static, 90
overload. 78. 153 storage, 113
parameter list, 45, 58 storage size, 116
procedure versus function, 43 synchronization, 114, 115

recursive calls, 74 termination, 81, 91, 100, 101
relation to nesting, 70 type, 61, 62, 90

renames, 78 unterminated, 101
return. 75, 89 TASKINGERROR. 91, 95, 96

subprograms. 128, 131 tasks, 128, 141

subrecords, 65 tentative rendezvous, 98

subtype. 36, 61. 66. 78, 109 terminate, alternative, 101

subtypes, 127 terminate alternative, 95, 101

subunit, 6, 47, 146 termination

suffix. 20 abnormal, 81, 102
code, 73

SUPPRESS. 84 condition, 72

symbolic normal, 101

constant, 125 program. 81, 101, 119

value, 23 task. 81. 91, 100

TEXT_10, 47 unchecked conversion. 82. 118

thread of control. 89 unchecked deallocation. 65. 82, 96, 117

time-critical, 102 unconstrained array, 62, 112, 125

timed entry call, 6, 48, 96, 98, 146 underscore, 17, 41, 149

timing, 93 unit
constraints, 42 calling, 81

tool, 5, 24 descriptive comments for. 26, 149
generic, 59, 130, 131, 132, 140, 141

type library, 41, 43, 45, 47, 77, 84, 101
anonymous, 62, 65, 90 program, 6, 13, 21, 43, 47, 83, 146, 148

array, 82 universal-integer. 23, 106, 151
constraints, 82 universal-real, 23, 111
conversion, 61, 69, 82, 111, 118
declaration, 36, 110 upper case, 17, 18, 149
derived. 36, 61 use clause, 77, 78
DURATION, 106, 114, 151
enumeration. 36 user-defined exception, 81

example, 153
floating point, 107, 110
grouping in packages, 44 V
identification. 20
limited private. 61, 63. 138 variable
name. 20, 36 access, 65
name selection, 36 shared, 115
numeric. 109, 110
predefined. 36, 66, 67, 109 variables, 129

private, 61, 63, 109, 138 vertical alignment. 5, 9, 10, 11, 148
record, 82, 84
renaming, 36 virtual processor, 89

strong, 36, 41, 61, 118, 120, 125 visibility, 45, 47, 70, 77, 78
task, 61, 62, 90
universal, 23

w
U while loop, 6. 72, 146

unary operator, 5, 145 with clause, 47, 77

ON LL l

I- cc .u0L

C E i
000 E

z z
00

0 00

C 0, -

4

(0 IL 000

Z Y 0;

D0 0 0 Li
cL 110a

ww

o) -h w
0 La l.L C

4a. 0 -in

03 000

z- z

fa C,
U0 LuJ f <

e
ZjE 0 E

0 Cz a21
L z -(C.i

p~ z
< 0

2l 9 - C
-J 0 z 0 C -

0 0~

o zw 0 ~ 0- 0L
4 0 Z 0 W3 -N
o L) < z

D w<0 z- 5
C3 0 0 1 0

LL z < -I

o - o I D w

011

> oz I- -

0 w
z

PLEASE We are working continually to improve the ADA

COMPLETE THIS QUALITY AND STYLE GUIDE. Please help by

REGISTRATION FORM. completing the questions (on the reverse
side) to tell us how you plan to use it.

FOLD, STAPLE, 'Mank you,
AND MAIL TO RECEIVE
UPDATES TO THE ADA
QUALITY AND STYLE THE ADA METHODS TEAM

GUIDE

a- -- a- - - FOLD HERE - - - - - - - - - - - -

FOLD HERE

